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From a long view of the history of
mankind—seen from, say, ten thousand years
from now—there can be little doubt that the
most significant event of the nineteenth
century will be judged as Maxwell’s
discovery of the laws of electrodynamics.

—Richard Feynman
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Supervisor’s Foreword

When Narain Karedla applied for a Ph.D. position in our group, he came with an
excellently formulated application and an enthusiastic recommendation from his
former institution, so that it was easy to accept him. What was completely unex-
pected was that he turned out to be one of the most brilliant young scientists that
ever worked in our group. For his thesis, Narain chose an extremely fascinating but
also challenging research topic—the electrodynamic interaction of single fluores-
cence molecules with surface plasmons in thin metal films. Although this may
sound like another highly specialized topic, it has become of fundamental interest
for many important applications in spectroscopy and microscopy. One particular
application, the precise spatial localization of single fluorescent emitters with
nanometer accuracy, is one of the core topics of the present monograph.

The ability to perform spectroscopy and imaging of single fluorescent molecules
in a dense environment (solution, polymer, solids, etc.) has revolutionized many
fields in physics, physical chemistry, and the life sciences. It all started with the first
successful detection of single rhodamine molecules in aqueous solutions by the
group of the late Richard Keller in Los Alamos during the 1980s. Since then, the
field has seen an explosion in methods and applications, culminating, among other
things, in the Nobel Prize for Chemistry for super-resolution microscopy, where
one half of the prize was for Photoactivated Localization Microscopy (PALM),
which is based on the ability to image and localize single fluorescent molecules.
This method exploits the fact that, although the apparent microscopy image of a
single molecule as seen on a recording camera is much larger than the actual size
of the molecule, one can localize its center position with arbitrary accuracy pro-
vided one detects enough photons from it. In PALM, one labels a sample with
single emitters that can switch between a bright fluorescent “on” state and a
long-lived non-fluorescent “dark” state. Next, one switches only few of these labels
into the on state, so that, in a microscopy image, each emitting molecules is clearly
separated from every other emitting molecule. The positions of these emitting
molecules are determined and recorded with highest possible accuracy, then they
are switched off (or bleached away), and another sparse subset of molecules is
activated into the on state. By repeating this cycle many times, one eventually
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records the positions of a large number of molecules, which in the end yields a
super-resolved fluorescence image of the sample, the spatial resolution of which is
only limited by the number of photons collected, but not by the width of one
molecule’s image.

PALM and PALM-like methods such as the similarly working Stochastic
Optical Reconstruction Microscopy (STORM) have seen tremendous success in the
life sciences. However, they are mostly used for two-dimensional imaging, because
localizing a single molecule within the image plane is much easier than localizing
its position along the optical axis. Although several methods for additionally
localizing single fluorescent molecules along the optical axis have been proposed
and implemented (such as bi-plane imaging, astigmatic imaging, or helical wave-
front shaping), the typical localization accuracy of these methods is ca. 3–5 times
poorer than the lateral localization accuracy, leading to a highly asymmetric optical
resolution of the final image.

Narain has come up with a surprisingly simple and robust solution to this
problem by employing the intricate physics of the electrodynamic interaction of
single fluorescent molecules with a thin metal film. From a classical point of view, a
fluorescent molecule can be considered to be an ideal electric dipole emitter. When
such an emitter comes close to a thin metallic film, its oscillating electric near field
starts to excite surface plasmons within the metal film. This leads to an efficient
transfer of energy from a molecule’s excited state into propagating surface plas-
mons, which can be measured as a decrease of a molecule’s excited state lifetime.
The energy transfer efficiency is sensitive to the exact distance between the emitter
and the metal surface. Thus, by precisely measuring the fluorescence decay time of
an emitter, and employing the perfect understanding of the physics behind the
energy transfer, one can calculate the emitter’s distance with a surprising accuracy
of a few nanometers. Of course, the devil is in the details, and the whole story also
depends on photophysical properties such as quantum yield, emission spectrum,
and dipole orientation. However, Metal-Induced Energy Transfer (MIET) Imaging,
as the method is called, promises to be a game changer for single-molecule
localization-based super-resolution microscopy in three dimensions.

The present monograph gives a thorough and self-contained introduction to the
semiclassical theory of the electrodynamics of single-molecule fluorescence and
the electrodynamic interaction of single molecules with arbitrary planar dielectric
and metallic structures. In this context, it discusses in detail how planar dielectric/
metallic structures change the excited state lifetime, emission intensity, emission
spectrum, angular distribution of radiation, and apparent quantum yield of emission.
It then uses this theoretical background to demonstrate how MIET Imaging can be
used to accurately localize a single emitter along the third dimension, and presents
detailed quantitative numbers for all possible metallic substrates. The experimental
part of the monograph then presents a large number of ingenious solutions for the
simultaneous measurement of the fluorescence lifetime, and the three-dimensional
absorption/emission dipole orientation of single emitters. This is particularly
important for all future applications of single-molecule MIET because the energy
transfer efficiency between a molecule and a metal structure depends not only on its

x Supervisor’s Foreword



distance from the structure, but also on its relative orientation with respect to the
structure. As a very beautiful side result, the measurement system is applied for
determining distribution functions for the angle between emission and absorption
dipole orientations of single molecules.

In summary, the monograph presents a unique and highly educational intro-
duction to the theory of single-molecule electrodynamics and the electrodynamic
interaction of single molecules with planar structures. Experimentally, it shows how
to measure all the different emission properties of single fluorescent molecules
(lifetime, angular distribution of emission, excitation/emission dipole orientation)
which are relevant for studying this interaction. From an application point of view,
the material presented is of enormous interest for single-molecule localization-
based super-resolution microscopy in all three dimensions. Toward the end, the
author also discusses applications of MIET in biophysics, soft matter physics, and
molecular physics. Thus, this book will be invaluable to everybody interested in
these broad research topics.

Göttingen, Germany
May 2017

Prof. Dr. Jörg Enderlein
Director
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Abstract

Single-molecule detection and spectroscopy have revolutionized the field of
fluorescence microscopy. Due to their enormous potential in studying physics,
chemistry, and biology at molecular level, the number of single-molecule-based
techniques and methods has grown exponentially in the last two decades. A recent
addition to the pool of existing single-molecule-based techniques are super-
resolution imaging methods, which are used for resolving structures far below the
diffraction limit of an optical microscope. However, a major limitation faced by
most of the methods developed so far is the resolution along the axial direction,
which is still an order of magnitude worse than the maximum lateral resolution
achievable. In this thesis, we present a new concept for measuring distances of
single molecules from a metal surface with nanometer accuracy using the energy
transfer from the excited molecules to the surface plasmons of a metal film, which
we term single-molecule Metal-Induced Energy Transfer (smMIET). We perform
the first proof-of-principle experiments on single dye molecules and demonstrate an
axial localization with nanometer accuracy. Here, we build the theoretical outline
for the description of smMIET, and throw light on the potential for its application in
structural biology.

Apart from this, in this thesis, we present the first experimental approach to
determine simultaneously the three-dimensional excitation and emission dipole
geometry of individual emitters. Here, we use defocused imaging in conjugation
with radially polarized excitation scanning to characterize the emission and exci-
tation transition probabilities. We demonstrate this approach on two commercially
available dye molecules and obtain the distributions of the angle between their
excitation and emission transition dipoles. This experimental tool can be used for
elucidating more complex excitation/emission geometries, such as those found in
fluorescent nanocrystals (quantum dots) and also for verifying the quantum
chemical calculations that are used for predicting the structure and geometry of the
molecular orbitals involved in an electronic transition.
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Chapter 1
Introduction

Fluorescence microscopy is an indispensable tool in biological research. This is
due to its high sensitivity, selectivity (ability to label target biomolecules and cellular
structureswith fluorescent dyes), simplicity in sample preparation (compared to other
microscopy techniques), and its applicability to live cells. The discovery of stable and
bright organic fluorescent molecules has allowed for the acquisition of high spatial
and temporal information of the target entities, which is now performed on a routine
basis. However, the fundamental limitation of any optical system is its inability to
provide spatial resolution below the wavelength of light, due to the wave nature
of light, which typically lies in the range between 300 and 800 nm. Only recently,
super-resolutionmethods, that circumvent the diffraction limit using variousworking
principles have emerged. There are several excellent reviews and books describing
in detail the working principles and technical details and the limitations of these
methods that are available [1–8]. Therefore, we skip the task of listing these methods
exhaustively in this chapter, and the reader is advised to refer to the citations above
to get acquainted with a majority of existing super-resolution methods.

One class of such techniques that are based on single-molecule localization on
an acquired 2D intensity image on CCD cameras such as Photo-activated Local-
ization Microscopy (PALM) [9], and Stochastic Optical Reconstruction Microscopy
(STORM) [10], direct STORM (dSTORM) [11] and Points Accumulation
In Nanoscale Topography (PAINT) microscopy [12]. The core idea of these methods
is to label a sample with fluorescent molecules that are photo-switchable (or that bind
transiently) and then to acquire many consecutive images with different sub-sets of
molecules switched into a fluorescent on state in such a way that in each recorded
image all fluorescing molecules are well separated from each other spatially. Then
these isolated molecules from each image are localized with a precision that is much
superior to the optical resolution limit of the used microscope using a Gaussian
model. In the end, by pooling together all positions from all detected molecules, a
pointillistic super-resolved image can be reconstructed.

© Springer International Publishing AG 2017
N. Karedla, Single-Molecule Metal-Induced Energy Transfer,
Springer Theses, DOI 10.1007/978-3-319-60537-1_1
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2 1 Introduction

Fig. 1.1 Left part of the illustration shows a stack of images each containing a sub-set of 2D
Gaussian intensity distributions. Each molecule’s position can be determined with a localization
precision ∝ σPSF/

√
N , where N is the number of photons. Right figure shows an overlay of the

localization positions (super-resolution image) on top of the sum of the intensity in the complete
stack. Credit Simulation of the raw data and evaluation was performed by Jan Thiart and Simon
Christoph Stein, DPI, Göttingen (see Ref. [17])

The physical basis of these super-resolution methods is the ability to pinpoint
the position of emitting molecules with much higher precision than the sizes of their
image on the detector, that is, the Point Spread Function (PSF) of themicroscope [13]
(see Fig. 1.1). This lateral localization precision is directly related to the number of
photons recorded from the single molecule, among various other factors, and is given
by the equation

σ2
xy = σ2

PSF

N

(
16

9
+ 8πσ2

PSFb
2

Na2

)
(1.1)

in which σxy is the localization precision, σPSF is the full-width-at-half maximum of
the PSF, N is the number of photons collected from themolecule, b is the background
noise level, and a is the pixel size of the detector [13]. Under typical conditions, at
room temperature, using conventional organic fluorophores, the achievable localiza-
tion precision is around 10 nm laterally and thus is almost two orders of magnitude
better than the diffraction limit of a typical microscope [14]. In this way, PALM,
STORM, and dSTORM have found many applications in biological imaging with
spectacular results; for example, see ref. [15], where periodic cytoskeleton structures
in neuron axons have been resolved, and ref. [16], that shows the eightfold radially
symmetric arrangement of integral membrane proteins, gp210, in a nuclear pore
complex.

Although these techniques primarily improve the resolution in the lateral direc-
tion (xy-plane), by employing schemes such as astigmatism-based imaging [19] and
biplane imaging [20], they have been used for the study 3D ultrastructures in biologi-
cal entities. However, the achievable axial resolution is still two orders of magnitude
worse than typical distances and sizes of biomacromolecules, due to which their
application in structural biology on macromolecular level is limited. The maximum
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achievable axial resolution in these techniques using the astigmatism approach is
limited to 50 nm.

Two distinct but powerful techniques, which are not based on single-molecule
localization, are Super-critical Angle Fluorescence (SAF) imaging [21, 22], and
variable-angle Total Internal Reflection Fluorescence (TIRF) microscopy, see
e.g. [23, 24]. They achieve, under optimal conditions, an axial resolution around
10nm. One class of techniques which indeed achieves single nanometer localization
accuracy along the optical axis is represented by interferometric PALM (iPALM)
or 4pi-STORM [25, 26]. Using iPALM with a plethora of constructed photoacti-
vatable fluorescent proteins fused to focal adhesion proteins in U2OS cells, it was
possible to localize different proteins in the focal adhesion cluster with a resolution
of 10–15nm along the z-axis [27]. However, complex instrumentation, requirement
of specialized fluorescent protein fusion constructs, and double transfection of cells
render this method rather tedious and complicated.

It is noteworthy to mention here that although Eq.1.2 allows for nanometer local-
ization precision, which scales inversely with the square root of the number of photon
detection events, the simplified assumption that σPSF is an ideal 2D Gaussian in the
focal plane of detection is not always true, that can result in substantial localization
error. One particular situation, which is more likely to be encountered than any other
factor effecting the nature of σPSF, is the restricted rotational freedom of a fluores-
cent molecule. In this case, one introduces a biased error when localizing using a 2D
gaussianmodel for PSF, which can be as high as∼15 nm even though themolecule is
in the focal plane of a highN.A. objective (1.2) [28, 29].Wewill discuss this situation
in depth in Chap.4. Furthermore, optical aberrations of any type will effect the local-
ization accuracy of single-molecule localization based super-resolution methods.
In particular, chromatic aberration drastically limits the measurement of nanometer
distances between two entities labeled with two distinct wavelength emitting fluo-
rescent molecules. Additional measurements or experimental schemes are employed
to reduce such errors partly [30–32].

When it comes to distance measurements of few nanometers, the most used
fluorescence-based optical method is Förster Resonance Energy Transfer
(FRET) [33], named after its discoverer Theodor Förster [34]. FRET is based on
the dipole-dipole interaction of two fluorophores, the so-called donor and acceptor
molecules. The near-field of the emitting donor falls off as r−3, so the excitation
efficiency of the acceptor follows a r−6 relationship. Due to this strong decline on a
nanometer length scale, FRET is used as a molecular ruler [35]. Quantitatively, the
rate of energy transfer from a donor to an acceptor molecule is given by the equation

ka = 1

τd

(
R0

r

)6

(1.2)

inwhich τd is the donor’s unperturbed fluorescence lifetime, r is the distance between
donor and acceptor, and R0 is the so-called Förster radius that depends on the donor’s
emission spectrum, the absorption cross-section of the acceptor dipole at these wave-
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lengths, and the relative orientation of bothmoleculeswith respect to each other. Usu-
ally it lies in the range of 2–6nm. Single-pair FRET (spFRET) experiments were
first realized by Ha et al. [36]. They used Near-field Scanning Optical Microscopy
(NSOM) on immobilized short DNA fragments with attached FRET pairs. Subse-
quently, many studies have successfully used spFRET for studying biological prob-
lems at single-molecule level [37–45].

As powerful as FRET and spFRET are, they have two major shortcomings. First,
the Förster radius R0 critically depends on the relative orientation between donor
and acceptor [41, 46]. A geometrical description of the situation is shown in Fig. 1.2.
In the extreme case in which the donor’s emission dipole is perpendicular to the
acceptor’s absorption dipole and both dipoles are orthogonal to the connecting line
between them, the energy transfer efficiency is zero (at least in the dipole-dipole
approximation).Usually, one assumes that both donor and acceptor are flexibly linked
to the targetmolecule so that their orientation quickly changes during the excited state
lifetime of the donor, which allows for quantitatively calculating the correct Frster
radius. Unfortunately, if this assumption is not true, there is no experimental approach
that could determine the full relative orientation between donor and acceptor, i.e.
determine the three angles (θa , θa and φ) shown in Fig. 1.2. In that case, there is no
way to quantitatively evaluate a FRET measurement and extract correct values for
the distance |r| between them. The second limitation is the short-distance range over
which FRET is applicable. Due to the rapid fall off in energy-transfer efficiency with
distance, one cannot measure distances beyond 10 nm, usually.

In this thesis, we propose an alternative approach and present the first single-
molecule study for measuring axial distances in the range of up to 100nm with

Fig. 1.2 Geometry of the FRET system. pd and pa show the orientations of the donor’s emission
transition dipole and the acceptor’s excitation transition dipole moment, respectively that are sep-
arated in space by r. θa (θd ) is the angle between pa (pd ) and r. φ is the angle between the plane
formed by pa and r with pd with the plane containing pd and r
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nanometer precision. It gives new perspectives for overcoming both the limitations
of FRET and the current resolution limitations of image-based single-molecule local-
ization. Themethod is based on the energy transfer from an excited fluorescent mole-
cule to surface plasmons in a thin metallic filmwhich will be described extensively in
the theoretical Sect. 2.4.3 and is thus called single-molecule Metal-Induced Energy
Transfer (smMIET). Briefly, this energy transfer modifies excited-state lifetime of
the emitting molecule. The change in lifetime depends on (1) the dipole’s distance
from the surface, (2) its orientation with respect to the surface, and (3) its intrinsic
quantum yield. As a net result, the lifetime varies nonlinearly, but monotonically,
with the dipole’s distance from the metal surface within a range of 100nm. Thus,
one can use this monotonic lifetime-distance relation for converting the measured
lifetime value into the distance of the emitter from the metal surface.

The first set of experiments demonstrating the possibility of exciting and detecting
single fluorescent molecules through a thin metal film were performed by Stefani et
al. [47], who used annular beamswith highN.A. objectives to excite singlemolecules
placed at known distances from the metal surface. In a previous publication, Berndt
et al. successfully demonstrated the application of MIET for measuring the distances
of densely labeledmicrotubules from a substrate with a thin gold filmwith nanometer
accuracy [48]. Recently, MIET was also used for nanoprofiling the basal membrane
of living cells over a metal surface. In Chap.3, we present the first experiments with
MIET for axially localizing single molecules from a surface. The presented data
show that smMIET indeed has the capacity of measuring distances of individual
molecules from a surface with nanometer accuracy.

As we will see in our theoretical section, the emission properties of almost all
organic fluorescent dyes are well described within the theoretical framework of
an ideal electric dipole emitter, characterized by its oscillation frequency, dipole
strength, and dipole orientation. Even if one takes into account that excitation and
emission happens between an ensemble of energy levels in the ground and excited
states, resulting in broad excitation and emission spectra, a molecule’s excitation and
emission properties are still well modeled by a superposition of dipole transitions
having different oscillation frequencies but the same orientation. The orientation
plays a crucial role in defining the photophysical properties of the molecule in an
anisotropic environment such as close to a surface, in a nanocavity [49, 50], or in
FRET [51, 52]. Therefore, in order to extend the smMIET approach to biological
samples successfully, one must determine the orientation of fluorescent molecules.
We will see in the forthcoming chapter that the orientation of the dipole signifi-
cantly influences the total power it radiates in the vicinity of a metal surface, which
makes it is absolutely necessary to determine the orientations of single molecules
for performing smMIET on labeled biological samples.

While it is rather straightforward to determine the projection of an excita-
tion/emission transition dipole into a plane perpendicular to the excitation/detection
axis, by using polarized excitation and detection [36, 53], the determination of the
complete three-dimensional orientation ismuchmore difficult. Several methods have
been developed formeasuring the three-dimensional orientation of the emission tran-
sition dipole of single molecules. Among them are aberrated imaging [54], polarized
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evanescent field excitation and imaging [55, 56], defocused imaging [57, 58], or
Bertrand lens imaging [59]. A few other methods are based on redistributing the
collected emission in a way that allows the separate detection of emission into dif-
ferent solid angles [60–62], and therefore, determining the out-of-plane orientation
by comparing the intensity ratios in these detected channels. More recently, meth-
ods based on wave-front engineering of emitted light using phase plates, quadrated
pupils, or spatial lightmodulators have been used for determining the emission dipole
orientation [63–65].

Most techniques measuring the three-dimensional orientation of the excitation
dipole of a single emitter are based on scanning a molecule with a focused laser
beam with temporally or spatially varying electric field polarization [66–71]. The
simplest of these methods is to scan a molecule with a radially polarized excitation
focus [72, 73]. Due to the inhomogeneous amplitudes of longitudinal and transversal
polarization components in such a focus, each single-molecule scan shows a char-
acteristic intensity pattern which depends on the three-dimensional orientation of its
excitation transition dipole. Many of the above mentioned techniques have also been
used to successfully determine the dimensionality and geometry of the excitation and
emission transitions in fluorescent nanocrystals (quantum dots), and to characterize
their behavior in complex electromagnetic environments [74–80]. In Sect. 4.4, we
will give a brief theoretical outline for determining the excitation dipole orientations
of dye molecules using a radially polarized laser, and later describe the method of
defocused imaging for estimating the 3D orientations of emission dipoles. There-
after, we briefly explore and discuss the combination of smMIET with these two
orientation determination methods in order to achieve a 3D localization accuracy
with nanometer accuracy and future application in structural biology.

Apart from all the above, it is well known from fluorescence anisotropy mea-
surements that for most fluorescent molecules, the excitation and emission transition
dipoles are not the same but inclined to each other. The angle γ between these two
dipole orientations enters the expression for the fundamental anisotropy of a fluoresc-
ing molecule [18]. A complete knowledge of the two orientations is also necessary
when explaining properties such as excited state decay rates, quantum yield and
enhancement effects in the vicinity of metallic nanostructures [81]. In this thesis,
we present the first experimental setup which looks at the three-dimensional orienta-
tions and geometry of both excitation as well as emission dipoles of single emitters
simultaneously, by combining these radially polarized laser scanning together with
defocused imaging in one optical setup. We perform experiments on Atto 655 mole-
cules spin-coated on a glass coverslip and Alexa 488 molecules embedded in a
polymer and obtain the distributions of γ for both the molecules. This experimental
tool can be used for elucidating more complex excitation/emission geometries such
as those found in fluorescent nano-crystals (quantum dots) and also to verify the
quantum chemical calculations used for predicting the structure and geometry of the
molecular orbitals involved in an electronic transition.

One is not limited to applications focusing on determining inter- and intra-
molecular distances with smMIET. Analogous to spFRET experiments, which are
routinely used to determine conformational dynamics of proteins and biomole-
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Fig. 1.3 The TTTR counting scheme

cules [51], smMIET can also be used to characterize dynamics of immobilized
intrinsically disordered protein and polymer chain by labeling them with a single
fluorescent molecule on the free end. Due to the fluctuations of the vertical position
of the label from the metal surface which acts as energy acceptor, time-dependent
intensity fluctuations will be observed that can be correlated.

Accurate single photon counting and timing with a pulsed laser excitation system
is central to almost all types of experiments performed and proposed in this thesis.
Therefore, we used state-of-art, unified instrumental approach of amodified classical
Time-Correlated Single Photon Counting (TCSPC) systemwith a timing and record-
ing scheme. Here, each detected photon is assigned two time tags, one with respect
to the delay from the last laser sync or signal from a high frequency oscillator, called
the microtime τ , and second with respect to the start of the experiment, called the
event-time t as shown in Fig. 1.3. The time resolution for the microtime goes down to
a few picoseconds, whereas for the macrotime is usually counted over the number of
syncs preceding the detection event [82]. In this way, the time of each detection event
can be recorded with a picosecond resolution from the start of the experiment upto
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several hours. This mode of photon timing is called the Time-Tagged Time-Resolved
(TTTR) counting. The basic instrumentation and the working details are published
in the work of Wahl et al. [82] (see also [83, 84]).

We use a HydraHarp 400 (PicoQuant GmbH, Berlin, Germany) for all the exper-
iments. TTTR photon counting allows for a broad spectrum of data analysis on the
incoming photon stream. Fluorescence Correlation Spectroscopy (FCS) [85, 86],
Fluorescence Lifetime Correlation Spectroscopy (FLCS) [87, 88], single-pair Frster
Resonance Energy Transfer (spFRET) [36, 89], Photon-Arrival-Time Interval Dis-
tribution (PAID) [90–92], Fluorescence Intensity and Lifetime Distribution Analysis
(FILDA) [93] are few of the single-molecule fluorescence methods that can be per-
formed on this platform.

Lifetime Measurements
Since it is essential to understand the concept ofmeasuring fluorescence lifetimes and
fluorescence lifetime imaging to follow this thesis, we include a short introduction
before proceeding to the theory chapter. In an experiment with a pulsed excitation,
one can time the delay of the arrival of fluorescence photons from a molecule which
was excited by the previous pulse with picosecond resolution. By repeating the
measurement several times one gets the distribution of the time spent by themolecule
in the excited state. This is achieved by creating histograms of the microtimes τ ,
which is identical to a classical TCSPC experiment. Figure1.4, shows an example of
a TCSPC curve measured, by exciting Atto 655molecules on top of a glass substrate,

Fig. 1.4 TCSPC curve showing the fluorescence decay of Atto 655 molecules on top of a glass
substrate. The resolution of each time bin is 64 ps. Photons were detected using a single photon
avalanche diode (MPD, Picoquant) and recorded by a TCSPC module (HydraHarp 400, Picoquant)
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with a resolution of 64 ps.Most of the organic fluorophores in their excited state decay
following first order kinetics. Therefore, the probability of finding a molecule in its
excited state at time t after excitation is given by

p(t) = 1

τ f
e−t/τ f , (1.3)

where τ f is the lifetime of the decay, which is the time at which the probability of the
molecule to be present in it’s excited state as e−1. For organic fluorophores this value
is in the order of few nanoseconds. If we denote the time between two consecutive
laser syncs is T, then the probability to detect one photon within a time interval dt
at any time t is

π(t)dt = ε′
∞∑
k=0

p(t + kT )dt (1.4)

where ε′ is the mean number of photons detected between two excitation pulses.
Thus, π(t) represents the ideal decay curve of the molecule and

∫ T
0 π(t)dt = 1. In

a classical TCPSC experiment, one measures the histogram of the delay between
the last excitation laser pulse and the first detected photon. The importance of only
the first photon is due to the fact that after a successful detection event is timed, the
electronics and the detector need a time to return back into a resting state and be
able to detect and record the next event. At high countrates, this leads to a loss in
data recording, and even worse, distortions to the recorded TCSPC curves. The net
density function H(t) of the recorded delay times can be written mathematically as

H(t) = N P(t)π(t) (1.5)

where N is the total number of photons recorded from the beginning of the experiment
and P(t) is the probability of not detecting any photon before time t after the last laser
pulse. The factors ε′ and N are approximately related to each other as ε′ = NT/tend ,
where tend is the total time. The important point worth mentioning here is that the
TCSPC recorded H(t) and the ideal curve π(t) differ by the function P(t). If one
realizes that the probability to detect a photon within an interval dt at time t between
two laser pulses is H(t)/N , then in the simplest case, ignoring the dead-times of the
electronics and detecors, one can see that the probability to not to detect a photon
between time 0 and t is given by

P(t) = exp

[
− ε′

N

∫ t

0
H(t ′)dt ′

]
. (1.6)

Therefore, H(t) is a given by a temporal convolution of itself with a kernel which
involves the ideal function π(t). At low count-rates, ε′ � 1, the probability function
P(t) ∼ 1 and therefore, H(t) ∼ π(t). Usually a count-rate which represents an
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average detection of 1 photon for every 100 laser cycles is advised (ε′ < 0.01) for
recording an unbiased TCSPC curve. Under these conditions,

H(t) = Nπ(t) = N
ε′

τ f

∞∑
k=0

exp

(
− t + kT

τ f

)
= Nε′

τ f

e−t/τ f

1 − e−T/τ f
(1.7)

If the lifetime is much smaller than the time between two laser pulses, τ f � T ,

H(t) = Nε′

τ f
e−t/τ f (1.8)

If the experiment is carried out on a sample with multiple fluorescent species or
species with multiple decay rates, then the density function H(t) can be written as

H(t) = Nε′
I∑

i=1

aie−t/τi

τi
(1.9)

where ai and τi are the amplitudes and the decay times, respectively. It must be
mentioned here that in all the above equations, we assumed an ideal system that
has unlimited timing resolution. In reality, however, this is not the case. The timing
electronics of the TCSPC system, and the response of the detector to a photon hit,
together with the laser pulse width, which in our case is typically in the order of
50–100ps, contribute to the overall response function of the system. The Instrument
Response Function (IRF) of a SPAD is usually in the order of 200–400ps. The total
IRF of the system is a convolution of all the IRFs together and can be estimated
by recording a TCSPC using a light scattering solution. Figure1.5 shows one such
recorded curve. Usually, the timing response of the instrument or detector is charac-
terized by the Full-Width at Half-Maximum (FWHM) of the IRF peak.
Thus, the recorded TCSPC decay of the fluorescent sample will be a convolution of
the decay function H(t) with the IRF I (t).

h(t) = I (t) ⊗ H(t) (1.10)

If the exact timing response of the instrument is known, estimating the decay
behavior of the fluorescent sample is an iterative re-convolution and least square
minimization problem. However, the timing response of the system, not only is it
difficult to measure reliably, but it is also highly sensitive to any optical aberrations
or instrument misalignment in the system, the detection wavelengths used, the power
of the laser used, since most of the diode lasers have a shoulder pulse which becomes
prominent as the power is increased. All these reasons necessitate one to measure
the IRF of the system after each experiment, using the same alignment, laser power,
filters and optics in the system.Measuring the IRF using a Raman scattering solution,
such as colloidal silica (LUDOX, Sigma Aldrich), is but one of the many ways that
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Fig. 1.5 Measured Instrument Response Function of a system constituting a Single Photon Count-
ing Module (SPCM-AQRH-13, Excelitas), a laser diode emitting at a wavelength λ = 485 nm
(LDH-P-C-485, Picoquant) used at full power, and a TCSPC timing card (HydraHarp 400, Pico-
quant). The response was recorded at a wavelength λem = 690 nm with a diluted solution of Allura
red dye (Sigma Aldrich), which has an ultrashort fluorescence lifetime of about 10 ps. The FWHM
of the measured IRF is about 730 ps. Data courtsey: Sebastian Isbaner, DPI, Göttingen

are used. The low intensity of the scattering process limits its usability for routine
measurements. Reflecting a laser directly into the detector through the used filters is
another choice of measuring the response function. This can be achieved by placing
a reflecting mirror in the sample space [94]. Another indirect way of measuring
the response function is using a dye solution which has an ultrashort fluorescence
lifetime in the order of a few picoseconds, such as Allura red (Sigma Aldrich), Rose
Bengal, etc. [95, 96], which is negligible as compared to the FWHM of the ideal IRF
and to the total time window between two laser pulses.

In the absence of an estimated IRF function, one can perform generally referred
to as “tail-fitting”, where mono- or multi-exponential decay fitting is carried out
excluding the part close to the IRF. Figure1.6 shows tail-fitting on the TCSPC curve
from Fig. 1.4. While this yields satisfactory results for lifetimes longer than 1ns,
it leads to an overestimation of decay values for fast decaying excited states on the
order of a few hundreds of picoseconds. Another simple approach is by estimating the
average or the standard deviation of the arrival times of photons. For background free
TCSPChistograms, the decay lifetimes can be determined reliably. Formore accurate
analysis, parametric models for calculating the IRF function based on the recorded
TCSPC curves are used [94]. These models approximate the IRF as a polynomial, or
a semi Gaussian-exponential functions which can be used for iterative-reconvolution
based fitting to yield more accurate decay values [97, 98].
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Fig. 1.6 The left figure shows fitting a TCSPC curve recorded for Atto 655 molecules on a glass
against an IRF calculated using the parametric model given in [94]. The right figure shows the
same TCSPC curve tail-fitted against a mono-exponential model with least square minimization.
The lifetime values obtained through these two methods was 3.41 and 3.35 ns respectively. The
average arrival time for photons arriving 1 ns after the peak (green shaded region) is 3.34 ns

Fluorescence Lifetime Imaging
In a fluorescence lifetime imaging experiment with pulsed excitation light source,
one stores both the microtimes τ and event-times t for each recorded photon. The
TCSPCmodule is connected to the piezo driver or galvo scanner driver, which allows
it to register line shift markers in the form of virtual photons. The photons are later
sorted into pixels based on their event-times. A histogram of the microtimes for each
individual pixel is then created. By evaluating the average lifetime for each pixel, a
lifetime image is calculated.

Figure1.7 shows an example of a lifetime image of Rhodamine 6G molecules
immobilized in a thin PVA polymer (see section blah for details) scanned with a
radially polarized laser. The image is 300 × 300 pixels with a pixel dwell time
of 4ms, which requires approximately 6min. The brightest pixel in the image is
around 1800 photons, and the figure shows the average arrival times of all photons
corresponding to each pixel. The pixels corresponding to an individual molecule
show a maximum-to-minimum variation of 1 ns, typically. This noise is due to the
low number of photons in each pixel. Since the photons in the TCSPC time bins
follow Poisson statistics, the error of lifetime estimation is inversely proportional to
the square root of the total number of photons. This means, if the average arrival time
of about 400 photons in a pixel is roughly 4ns, the error due to the Poisson statistics
is atleast 0.2ns. The variation of the individual pixel’s lifetime with low photon
numbers can vary significantly from the mean lifetime of the molecule. However,
as can be seen from the color-coded image above, the fluorescence lifetime of each
molecule remains almost constant throughout the duration of the scan. Exceptions
in some cases may arise due to multiple emission states of a dye molecule [99],
or due to local fluctuations [100]. In any case, collecting the photons from all the
pixels corresponding to a single molecule will result in better statistics and reveal
the behavior of the excited state decay. It is noteworthy to mention, again, that in
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Fig. 1.7 Fluorescence lifetime image of Rhodamine 6Gmolecules in a PVApolymer scanned using
a radially polarized laser. The image is 15 × 15μm2 with a pixel size of 50nm. Each pixel shows
the average arrival times of the photons corresponding to that pixel

order to faithfully determine the fluorescence lifetime of a molecule using Eq.1.9,
the photon detection rates should be within one hundredth of the laser repetition
rate. The reason for acquiring the data with such a low photon rate is due to the fact
that after every photon detection, one has dead-times for both the detector(s) and the
timing electronics, i.e. both the detector and the timing electronics are inactive for
a certain time before they can detect/time the next photon, and at higher countrates,
this leads to a loss of recorded photons and much worse, a distortion to the measured
decay curve [101]. In other words, if one uses a 20MHz laser, then with a pixel
dwell time of 4ms, dead-time artifacts can deviate the pixel’s average lifetime if the
number of photons collected in that pixel are greater than 800! One has to correct
for such artifacts in order to acquire lifetime images with high countrates, using a
recursive algorithm as shown by Isbaner et al. [101].

The thesis is divided into six chapters. Chapter 2 aims to provide the theory to
understand the behavior of a fluorescent molecule from quantummechanical point of
view, as a two state system, and within a semi-classical framework, as an oscillating
electric dipole. In particular, we will examine the behavior of a single molecule close
to a dielectric and a metal interface, using the Weyl representation of an oscillating
dipole’s radiation field with a superposition of plane and evanescent waves and
fundamental Fresnel equations. This will complete the theory of MIET.
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Chapter 3 provides the proof-of-concept experiments of smMIET, where we
indeed show that single molecules can be localized with nanometer accuracy in
the axial direction, using a standard confocal microscope.

Chapter 4 includes the theory, experimental setups to measure the 3D excitation
and emission transition dipole orientations of fluorescent dye molecules using radi-
ally polarized laser and defocused imaging, respectively. We explore the application
of these methods in combination with smMIET to obtain the heights of dye mole-
cules embedded with arbitrary orientation in a thin polymer film. Later, we combine
the two techniques together to determine the two 3D transition dipole orientations
simultaneously and the angle γ between them.

InChap.5, we explore the properties of variousmetal surfaces for their application
in smMIET briefly. We discuss potential applications of smMIET highlighting a few
ongoing experiments and directions of research. Lastly, we include a few concluding
remarks in Chap.6.
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Chapter 2
Theory

In this chapter, we build the theoretical outline for understanding the fundamental
electrodynamic and photophysical properties of a fluorescent emitter. We start with
a quantummechanical picture where we introduce a fluorescent molecule as a dipole
emitter with a fixed transition dipole moment oriented in its molecular structure.
Thereafter, we consider a dipole in an empty box with boundary conditions on the
electromagnetic field’s periodicity, in order to determine its absorption and emis-
sion coefficients and connect these properties with its spontaneous emission rates. In
order to account for its emission properties in the presence of a dielectric or a metal
interface, we introduce a dipole in a semi-classical quantum optical framework. We
start from a basic description of plane waves using Maxwell’s equations, Fresnel’s
equations for reflection and transmission, etc. and ultimately calculate the total radi-
ation power of a dipole as a function of its distance and orientation from such an
interface. This completes our introduction to the concept of Metal Induced Energy
Transfer (MIET).

2.1 Quantum Mechanical Picture of Fluorescence

From a quantum mechanical viewpoint fluorescence is a process which involves
a repeated transition of a molecule between two quantized energy states (or the
transition of electrons between two molecular orbitals) given by wave functions,
say ψ1 and ψ2. The excitation from the ground state to the excited state takes place
following an absorption of a photon of energy hν, followed by the decay of the
molecule from the excited state back to the ground state. This is achieved either by the
emissionof a photon, or non-radiatively by transferring the energy to the surroundings
or lost internally. The excitation and de-excitation processes are accompanied by
perturbations in the delocalized electron cloud over themolecule’s framework. These
perturbations depend on the probability of a transition between two energy states
and also on the selection rules based on the symmetry of the structure of molecular
orbitals involved. Therefore, each transition takes place along a preferred direction
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in the molecule’s framework which is known as the transition dipole moment, and
the magnitude of this vector represents the probability of this transition. Below, we
will briefly introduce this concept and touch upon some fundamental photophysical
properties of a fluorescent molecule that are otherwise hard to explain from a purely
classical framework.

2.1.1 Molecular Excitation and Emission

A complete explanation for the electronic spectra of molecules is extremely com-
plex. An electronic transition is coupled with vibrational and rotational transitions
which makes it even more complicated. However, in this section we will state some
general rules and fundamental principles associated with the excitation and emission
phenomena of fluorescent dyes. We refrain ourselves from dealing with the detailed
quantum chemical treatment of the molecular states (those who wish to dive into
the ocean might start by referring to excellent books such as [1]). To begin with, the
molecular states are treated as a linear combination of all the atomic orbitals involved,
which acts as a good starting point for themolecular orbital theory. Thewavefunction
of a molecule in each state gives the overall probability of the electron’s position in
space.

Keeping the discussion between two nuclei and a single electron for the sake
of simplicity, when two atomic orbitals φ1 and φ2 interact, two molecular orbitals
ψ+ = φ1 + φ2 and ψ− = φ1 − φ2 are formed, where ψ+ has lower energy, and
is therefore called as bonding orbital, than ψ−, which we call as an antibonding
orbital. The potential energy curves, as a function of the internuclear distance, can
be obtained by calculating the Hamiltonian over these wavefunctions. The potential
energy depends on electron-nuclei interactions, the angular momentum of the elec-
tron’s spin around its own axis and in the orbital, spin-orbital coupling, and other
factors which play a major role in deciding the fate of the electron in each state.
Figure2.1 shows the general characteristics of potential energy observed for a bond-
ing and antibonding orbital. Depending on the symmetry and shape of the atomic
orbitals involved, the molecular orbitals can be singly (σ) or doubly degenerate (π).
In a many electron system, the electron-electron repulsion plays a dominant role too.
Due to these interactions, the electrons occupy the energy states starting from the
lowest energy state following Hund’s rule of maximum multiplicity for the electron
spin and Pauli’s exclusion principle. The Highest Occupied Molecular Orbital is
called the HOMO and the Lowest Unoccupied Molecular Orbital, above the HOMO
in the energy ladder is termed the LUMO. We must emphasize here that for many
electron systems, the potential energy between two nuclei is the effective curve tak-
ing all the electrons in the bonding and the antibonding orbitals into consideration.
Thus, the two nuclei will be driven apart, or the bond is broken only when the net
curve has antibonding nature. In other words, one can see the net potential energy
curve as a summation of the curves calculated for each electron individually in its
respective molecular orbital. We follow the general naming of the molecular orbitals
such as σ and σ∗, π and π∗ for bonding and anti-bonding orbitals of degeneracy
one and two respectively; and n and n∗ for non-bonding molecular orbitals which



2.1 Quantum Mechanical Picture of Fluorescence 19

Fig. 2.1 An exemplary plot
showing energy as a function
of distance for a bonding and
an antibonding orbital

constitute a lone pair of electrons from an atom which does not take part in bond
formation. The electrons can undergo electronic transitions to the higher antibonding
states upon interaction with an incident electromagnetic radiation, but in some cases
these orbitals are orthogonal to all the participating atomic orbitals and thus also the
molecular orbitals, thereby prohibiting any such transitions.

This picture can be extrapolated to a polyatomic organic molecule where each
atom contributes to one or more atomic orbitals for bonding with its neighboring
atoms. In such a molecule, several electronic transitions are possible from its filled
orbitals to higher vacant orbitals. Each transition requires a particular wavelength
which is equal to the energy gap between the two molecular orbitals, and have
different probabilities. The absorption and emission spectra formost strong electronic
transitions in organic molecules are usually related to a transition involving a group
of atoms in the molecule’s structure, which is called the chromophore. The most
common chromophores involve carbonyl, nitro, nitroso groups, and carbon-carbon
double bond systems. Chromophores with alternate double bonds are planar systems
and have their π orbitals over the entire conjugation. The wavefunctions of the
molecular orbitals can thus be approximated as waves with nodes at the edges of
this box. The lowest orbital has no nodes in between the conjugation length and thus
allows the maximum electron density between all the atoms. The number of nodes
increase by one for each higher energy molecular orbital. These are called Hückel’s
molecular orbitals, named after Erich Hückel who calculated the molecular orbital
picture for conjugated π organic molecules, including cyclic molecules. For a linear
conjugated system with i number of π bonds, i molecular orbitals involved in the
bonding. The energy of each state is given by En = n2h2/8mL2, where L is the
total length of the molecule (here one can approximate L as i times the length of
a carbon-carbon bond with a bond order of 1.5) and m is the reduced mass of the
electron. For such amolecular system, HOMO is the i th molecular orbital and LUMO
the i + 1th, and therefore the excitation wavelength (λ = hc/(Ei+1 − Ei )), can be
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calculated using the simple equation

λ = 8mL2c

h(2i + 1)
(2.1)

For dyemolecules that absorb andfluoresce in the visible range,mainly the transitions
between π ↔ π∗ and n ↔ π∗ are responsible. Thus the shape of the frontier
orbitals (HOMO and LUMO) is chiefly determined by the conjugation structure of
the chromophore. The wavelength range for the transitions σ ↔ σ∗ usually lies in
the ultraviolet region.

The complete absorption spectra of polyatomic chromophores contains all the
transitions that are possible. Each transition is associatedwith twomolecular orbitals,
and therefore represents a change of electron density over the structure of the mole-
cule along a particular direction termed the transition dipole. For a transition between
two states with wavefunctions ψ f and ψi , the associated transition dipole moment is
defined as

M̂ f i = 〈
ψ∗

f

∣∣q r̂
∣∣ ψi

〉 =
ˆ

ψ∗
f q r̂ψi dτ (2.2)

where q r̂ is the electric dipole moment operator and M̂ f i is the matrix element of
the transition dipole matrix M̂ corresponding to the transition ψ f ↔ ψi . Clearly, the
characteristics of ψi and ψ f play an important role in determining the magnitude
of the transition between the two states, which give us the selection rules that are
fundamental for all spectroscopic studies. If the expectation value for the transition
dipole moment operator between the two states is zero, the transition takes place
infrequently and it is said to be forbidden, and if it is a finite value, it is called an
allowed transition. Since the dipole operator is a translation operator r̂ times charge,
it depends only on the spatial part of thewave functions.One can interpret this is in the
followingway: if themolecular orbitalψi overlaps in spacewith themolecular orbital
ψ f then the molecule will absorb energy from an EM radiation with energy equal to
the energy gap between these two orbitals. However, exceptions exist. An example
where this is not true, i.e. where the orbitals are spatially orthogonal, is a π∗ ← n
transition in a carbonyl group. Since we already realized above that the non-bonding
orbital n is orthogonal to all the molecular orbitals, the transition is forbidden. But,
a weak absorbance is observed in most of the molecules containing the carbonyl
group due to several reasons. One basic reason which we did not consider in all
the arguments made above is the spin-orbital coupling which is beyond the scope
of this thesis. It is strenuous to calculate the dipole moment of each transition for
complicated structures such as for those shown in Fig. 2.2. But, simple rules from
group theory in quantum mechanics can be of great help to predict at least which
transition probabilities are necessarily zero or forbidden (see Chap.11 from the book
[2] for example).

The spectra of the chromophore group shift towards longer wavelengths due to the
presence of other functional groups attached to it such as hydroxyl, amino, oxymethyl
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Fig. 2.2 The structure of Rhodamine 6G showing the orientation of the transition dipole moment.
The carbon atoms of the Xanthene core atoms are numbered C1 to C13. Two ethylamine aux-
ochromes are attached one each on the carbons C6 and C12 which participate in the conjugation
with the help of their lone pair of electrons. The group attached on C7 lies perpendicular to the
plane of the chromophore due to steric hindrance and does not take part in the conjugation. The π

molecular orbitals lie perpendicular to the frontier orbitals of the chromophore (see [5])

groups, which are called auxochromes. These auxochromes do not absorb or emit
light themselves but when present next to a chromophore, they increase the conjuga-
tion length due to their own lone pair of electrons. One needs to take the auxochromes
into account too while calculating the frontier orbitals for the dye molecules, which
can majorly contribute to the shape of these orbitals by varying the number and
position of the nodal planes in the chromophore’s structure. For example, the chro-
mophore responsible for the absorption and emission properties of Rhodamine 6G
is the Xanthene core and if we look at the frontier orbitals of this chromophore
alone, then the transition should take place with the shift of electron density majorly
along the direction of O↔C7 [3]. However, experiments and theoretical calculations
for this dye suggest the transition dipole moment along the direction of C12↔C6
[4]. This is due to the presence of the two amino auxochromes, whose lone pair of
electrons also participate in the conjugation.

2.1.2 Single-Singlet and Singlet-Triplet Transitions

Under the assumption that the coupling of the spin and orbital angular momentum
is weak, we can separate the wavefunction of each molecular orbital into a spin and
a spatial part.

ψ(r1σ1, r2σ2) = ψ(r1, r2)X (σ1,σ2). (2.3)

where X (σ) can be written as a combination of α(σ) or β(σ) depending upon the
sign of the electron spin (↑ or ↓) respectively. These functions are the eigenvalues of
the Hermitian spin angular-momentum operator, and therefore are orthogonal. The
ground state of the molecule is, in a majority of cases, a singlet state, where the spin
of the electrons are paired, S = 0. The spin multiplicity for such a paired state is
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2S + 1 = 1. The spin part of the wave function is given by

Xi (σ1,σ2) = [α(σ1)β(σ2) − β(σ1)α(σ2)] (2.4)

The antisymmetric function above on the right side is the Pauli principle which
states that the total wave function of a system of electrons must be antisymmetric
with respect to the interchange of any two electrons. If σ1 and σ2 are interchanged,
the sign of the function becomes negative. This represents the fact that the probability
to find two electrons with same spin close to each other is zero. For the excited state
however, when one electron is promoted to a higher molecular orbital, the total spin
can be 0 or 1. The state when S = 0 is again a singlet, and the spin wavefunction is
given by the same Eq. (2.4). But, for the total wave function to be antisymmetric, the
spatial part has to be symmetric. Therefore,

ψ f (r1, r2) = [
ψ1(r1)ψ2(r2) + ψ2(r1)ψ1(r2)

]
. (2.5)

where ψ1 is the spatial wavefunction of obital in the ground state and When the
total spin S = 1, the spin multiplicity is 3. This can be explained by the three possi-
bilities for the spins of the two electrons involved. In this case the three associated
wavefunctions are given by

X f (σ1,σ2)(σ1,σ2) =

⎧
⎪⎨

⎪⎩

[α(σ1)α(σ2)] ↑↑
[α(σ1)β(σ2) + β(σ1)α(σ2)] ↑↓
[β(σ2)β(σ1)] ↓↓

As the spin part is symmetric, the spatial wavefunction takes up the antisymmetric
nature in order to obey the Pauli principle.

∴ ψ f (r1, r2) = [
ψ1(r1)ψ2(r2) − ψ2(r1)ψ1(r2)

]
. (2.6)

TheHamiltonian is applied only on the spatial terms, which serves as a good approxi-
mation.With this approximation, we immediately conclude that the energies of three
possibilities for the state S = 1 are equal. Thus, it is called a triplet state. Further,
the energy of the triplet excited state is less than the energy of a singlet excited state.
This holds true for any excited state. The diagram in Fig. 2.3 shows the depiction of
the states involved.

The wavefunction ψ(r1σ1, r2σ2) is said to be even parity if it does not change its
signwhen the sign of the coordinates are inverted and it is odd parity otherwise. Since
the dipole operator p = q r̂ changes the sign r → −r , the integral (2.2) vanishes if
both the wavefunctions ψi and ψ f have the same parity. Thus, either of them must
have an odd and the other an even parity for the transition to take place. The even and
odd nature of a wavefunction must not be confused with its symmetry with respect
to the interchange of electrons. Separating the spin and spatial parts of the integral,
we have
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〈
ψ∗

f |p| ψi
〉 = 〈X f |Xi

〉 ˆ
ψ∗

f q r̂ψi d
3r (2.7)

The spin term,
〈X f |Xi

〉
is non-zero only if the wavefunctions for both the states are

identical. This is the first selection rule for electronic transitions, and it states that the
spin state must not be altered in an electric dipole transition. This means that singlet
state to triplet state transition is forbidden and vice versa. Thus, a molecule is excited
from its singlet ground state S0 to its singlet excited state S1, which then returns to
the ground state undergoing either spontaneous or stimulated emission. This cycle
process must go on indefinitely, unless, as a rare event, the molecule undergoes what
is known as intersystem crossing, and ends up in a metastable triplet state T1. The
probability of this transition depends primarily on the spin-orbital interaction where
the triplet state ‘mixes’ with the pure singlet states so that a perturbed triplet state t1
is formed [6].

ψt1 = ψT1 +
∑

k

akψSk (2.8)

where ak give the coefficient of mixing with all possible singlet states Sk due to spin-
orbital interactions. The square of these coefficients is proportional to the probability
for a transition to the perturbed triplet state

P = 2π

3�2

∑

k, j=1→3

(Sk

∣∣q r̂
∣∣ T j

1 )2 (2.9)

The mean lifetime of the triplet state is inversely proportional to the probability of
singlet-triplet transition [7]. For a typical organic fluorophore, this is around 10−6 ∼
10−4 s. During this time, the excitation-emission fluorescence cycle is broken, and
the dye remains in the dark state. This temporal intermittency of intensity from a dye
molecule is known as blinking.

2.1.3 Franck-Condon Principle

When an electronic transition takes place, all the nuclei are assumed to be stationary.
This treatment is similar to the Born-Oppenheimer approximation which relies on
the fact that the nuclear masses are much larger than the electron mass and thus
the motions of both can be separated. This is the Franck-Condon principle and is
the basis of all the vibronic transition analysis following an electronic transition.
Figure2.3 illustrates the energy diagram of the transitions showing the vibrational
states in each electronic state. The equilibriumpositions in the higher electronic states
are shifted towards larger distances due to the fact that they have higher antibonding
character. When a transition takes place between S0 and S1, the internuclear distance
is equal to the bond length in the ground state and since the nuclei motion are
fixed, the transition occurs to the vibronic state where the internuclear distance is on
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Fig. 2.3 Franck Condon diagram showing the potential energy curves for a singlet ground state and
excited state (S0 and S1) and a triplet state T1. The red vertical arrows show the vertical transitions
from the ground state to excited states and back

the edge of the potential energy curve as shown in the figure. Such transitions are
called vertical transitions. Thereafter, the nuclei vibrate at this energy level around
the shifted equilibrium distance and readjust to the changes in the electron density
which in-turn alters the overall electron density over the molecule, and so on until
a new equilibrium state is attained. The same is observed when the transition takes
place from the excited states to the ground state. The probability of transition is
given by the square of the overlap integral between the two vibrational states in the
respective electronic states.

F(ν ′, ν) =
∣∣∣∣

ˆ
ψν(R)ψ∗

ν ′(R) dτN

∣∣∣∣

2

(2.10)

where ψν and ψν ′ are the wavefunctions of the vibronic states in the ground and the
excited states respectively and R denotes the nuclear coordinates during the transi-
tion. At room temperature, the electronic transition usually proceeds from its ground
vibronic level. The factors F(ν ′, ν) are the Franck-Condon factors and contribute to
the shape of the intensity spectrum of electronic transitions.

2.1.4 Radiationless De-Excitation

There are several relaxation processes in a molecule that proceed without the emis-
sion of photons. The intersystem crossing, where transitions occur between states of
different multiplicity, introduced in the previous section, is an example. The relax-
ation of the molecule from higher excited states of the same multiplicity to the first
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excited state (for example Sn → S1) non-radiatively is known as internal conversion.
Radiative decay occurs with an appreciable yield only from the lowest excited state
of a given multiplicity. This is the well-known Kasha’s rule in photochemistry.

The radiationless relaxation of a molecule when excited to a higher state can
be completely internal due to some rearrangement reactions in the excited state.
As described briefly also in the previous section, an electronic excitation alters the
nuclear coordinates and the electron density of the molecule. This structural change
costs the molecule some energy which is called the reorganization energy (λ), and is
an example of an ultrafast process which lasts about a few femtoseconds to picosec-
onds (10−15 ∼ 10−11s). A well-known example depicting this phenomenon is the
phenolphthalein molecule in basic aqueous solutions (pH ∼8.2 - 12). The phenolph-
thalein molecule, even though its structure is similar to the highly fluorescent fluo-
rescein molecule, is non fluorescent. This is due to the fact that the total energy in its
excited zero-order state (within the Born-Oppenheimer approximation) is converted
into vibrational energy and torsional energy, which results in the rotation and vibra-
tion of the two phenyl rings attached to the central carbon. Whereas in the case of
fluorescein, the two phenyl rings are fixed in a plane with two C-O bonds forming a
rigid structure. In such a case, the rate of the non-radiative process is quenched and
most of the relaxation takes place either radiatively or through intersystem crossing
[8]. The rate of the intramolecular relaxations is related toλ, such that, for high values
of λ (where the electronic and vibrational coupling is strong), the non-radiative rates
are high [9]. The linewidth and the exponential decay of the non-radiative processes
also depend on the interaction between the excited zero-order state and the density
of all the vibronic states located close to that state [10], which, as one would expect,
directly depends on the number of atoms in the molecule. This is straightforward if
one writes the transition probability similar to Fermi’s golden rule (see Eq. (2.19)).
Due to the presence of ‘sparse’ energy levels in small molecules, no intramolecular
electronic relaxation processes are encountered and relatively longer excited state
lifetimes τ f are observed [11].

In order to complete our discussion concerning the pathways of molecular emis-
sion, one must introduce the well-known property that is used to characterize a
fluorescent emitter, the quantum yield of radiation (�). As the name suggests, it
represents the probability an excited molecule decays radiatively. Quantitatively, it
represents the ratio of the number of photons emitted by the molecule to the number
of photons that the molecule absorbed in a given time. Given the radiative rate κr and
the sum of all the non-radiative rates possible κnr , the quantum yield is defined as

� = κr

κr + κnr
. (2.11)

2.1.5 Einstein’s Coefficients and Spontaneous Emission Rate

In a seminal note from 1946 [12], Edward Mills Purcell first mentioned that it is
possible to change the spontaneous emission rate of an emitter by placing it close to
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a resonant structure, for example a metallic cavity. This change of the spontaneous
emission rate is due to the action of the emitted field onto the emitter itself when
it is back-scattered by the cavity. However, there is a deep connection between the
spontaneous emission rate of a quantum-mechanical emitter and its absorption and
stimulated emission coefficients: In thermal equilibrium, the number of photons per
time absorbed by an emitter from the vacuumelectromagnetic field has to be balanced
by an equal number of photons per time emitted by that emitter. This imposes a rigid
relation between absorption and emission properties of an emitter. In this section,
we will briefly recall the connection between spontaneous emission rate and induced
absorption and emission coefficients for an electric dipole emitter in empty space.
Although this can be considered classical textbook knowledge, it will help us to
define all relevant quantities which will be important in the following sections which
considers the spontaneous emission rates of a dipole next to a dielectric or a metallic
interface (Fig. 2.4).

We will start with considering an electric dipole emitter within an empty box
of edge length L in thermal equilibrium at temperature T . It is assumed that the
vacuum electromagnetic field within the box is in thermal equilibrium and obeys
periodic boundary conditions with respect to the box. The vacuum electric field can
be expanded into plane wave modes, E = E0 exp (ik · r − i ω t), where E0 is the
amplitude vector of a given mode and k its wave vector with length k = ω /c. Here,
ω is the oscillation angular frequency of the mode, and c the vacuum speed of light,
and is related to the frequency ν = ω /2π. The imposed boundary conditions imply
that we have for the x-component of the wave vector kx L = 2πnx , where nx is an
integer number. Similar conditions hold also for the y- and z-components. Thus, the

Fig. 2.4 A dipole situated in an empty cubic box with edge length L . The wavefronts of one plane
wave mode and its phase on the three sides of the cubes are shown here
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mode density ρν within frequency interval dν and solid angle element sin θdθdφ is
given by

ρν L3dν sin θdθdφ = 2
k2dk sin θdθdφ

(2π/L)3
(2.12)

where the factor 2 on the right hand side takes into account that there are two different
principal polarisations of the electric field. Using Planck’s energy quantization and
Bose-Einstein statistics, the average energy per mode is

εν = hν

exp (hν/kB T ) − 1
(2.13)

where h is Planck’s constant, kB is Boltzmann’s constant, and T is the temperature.
Thus,when taking into account that themean energy density (energy per unit volume)
is εν/L3, one finds the mean energy density per solid angle and frequency to be equal
to

ενρνdν = 2
k2dk sin θdθdφ

(2π/L)3
1

L3

hν

exp (hν/kB T ) − 1
= 2hν3

c3
dν sin θdθdφ

exp (hν/kB T ) − 1
(2.14)

which is Planck’s famous formula for black-body radiation.
Now, themean energy absorbed by an electric dipole is proportional to this energy

density times anorientation factor, integrated over all possible propagation directions.
The orientation factor takes into account that only electric field components along
the orientation of the emitter’s dipole contribute to energy absorption, and it is given
by 〈|Ê · p̂|2〉 = (1/2) sin2 θ, where p is the electric dipole amplitude vector of
the emitter which is assumed to be oriented along θ = 0. The angular brackets
denote averaging over all possible orientations of Ê with Ê ⊥ k. Thus, one finds the
following expression for the mean density per frequency of the electromagnetic field
which takes part in energy absorption by the dipole emitter

S(ν)dν = hν3

c3
dν

exp (hν/kB T ) − 1

ˆ 2π

0
dφ

ˆ π

0
sin θ · sin2 θdθ

= 8πhν3

3c3
1

exp (hν/kB T ) − 1

(2.15)

Considering all possible dipole orientations gives an additional factor of 3, and there-
fore, one has
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S(ν)dν = 8πhν3

c3
1

exp (hν/kB T ) − 1
(2.16)

The effective mode density or Density of States (DOS) ρ̃ν of the electromagnetic
field that is coupled to the energy absorption by the dipole emitter is given by

ρ̃ν = 8πν2

c3
(2.17)

From time dependent perturbation theory, the probability P for a transition of
the molecular system between two quantum states with energies Ei and E f when
subjected to an electromagnetic radiation with an oscillation frequency ν for a time
t1, involving only the first order perturbation, averaged over all orientations of the
dipole momemt p is given by [2]

Pi f (t1) = 1

3�2
|p|2t1

ˆ
S(ν)

(
sin 1

2 (νi f − ν)

1
2 (νi f − ν)

)2

dν (2.18)

where νi f = |E f − Ei |/h. This shows that the transition probability has a sharp
maximum when ν = νi f and other frequencies do not contribute much. Therefore,
the transition probability per unit time, or transition rate between the two states is
given by the expression

W f ←i = 2π|p|2S(νi f )

3�2
(2.19)

This is the well-known Fermi’s Golden Rule for the transition probability between
two states, which was originally derived by Paul Dirac in the year 1927 in his beau-
tiful manuscript titled “The Quantum Theory of the Emission and Absorption of
Radiation” [13]. The interesting point to realize from the equation above is that
while (E f − Ei ) = hνi f represents the absorption of the radiation incident on the
molecule, the case where (Ei − E f ) = −hνi f represents the case where a molecule
present in the excited state falls into the state with lower energy, emitting radiation at
the same frequency νi f . This phenomenon is called stimulated emission. The expres-
sion for the transition probability for the stimulated emission can be written similar
to the expression given in Eq. (2.18) by replacing νi f with−νi f which gives the same
transition rate as in expression (2.19). Ignoring all higher orders of perturbation, at
thermal equilibrium, the transition rate shown in equation (2.19) directly gives the
Einstein coefficient of stimulated absorption Bi f

W f ←i = 2π|p|2
3�2

S(νi f ) = B f i S(νi f ) (2.20)

Since the transition rate for the stimulated emission is identical to the rate of stim-
ulated absorption, the Einstein coefficient of stimulated emission B f i is exactly the
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same as Bi f . Physically this translates to the statement that the same electromagnetic
field which can excite the molecule from a state with lower energy to higher energy,
can also act as an energy sink which brings the molecule from a higher energy state
to a lower energy state. Therefore, one would conclude that the probability of finding
a molecule in its ground state or excited state is equal. However, at a temperature T ,
if an ensemble of molecules is in thermal and radiation equilibrium the ratio of the
population in the excited state to the ground state is given by Boltzmann statistics
exp(−hνi f /kB T ). This supports the fact that a molecule in the excited state also
emits radiation spontaneously, whether or not an external electromagnetic radiation
field is present. Therefore, at equilibrium, one must have (Fig. 2.5)

N f (A f i + B f i S(νi f )) = Ni Bi f S(νi f ), (2.21)

where Ni and N f are the number of molecules in the initial and final state, respec-
tively. A f i in the equation above is the Einstein coefficient of spontaneous emission.
From this equation the density of states S(νi f ) can be written as

S(νi f ) =
[

A f i

B f i

]

[
Bi f

B f i

] [
Ni
N f

]
− 1

(2.22)

∵ Ni

N f
= exp

(
hνi f

kB T

)
and Bi f = B f i , S(νi f ) =

[
A f i

Bi f

]

exp
(

hνi f

kB T

)
− 1

(2.23)

Comparing with equation (2.16) one has

Fig. 2.5 Diagram illustrating the elementary transitions of a molecule between the two states i and
f in Einstein’s model
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A f i = 8πhν3
i f

c3
B f i = ρ̃νhνB f i (2.24)

This shows that the spontaneous emission is proportional to the cube of the tran-
sition frequency νi f . Also important to note here is that the spontaneous emission
is directly related to the probability of absorption which is itself proportional to the
square of the transition dipole moment, thus the strength of the dipole transition.

Note that three important fields of theories have been combined together here,
namely Planck’s theory for black body radiation, thermodynamics (Boltzmann dis-
tribution) and time dependent perturbation theory. The electromagnetic field here is
also quantized and is seen as a collection of harmonic oscillators. The transfer of
energy between the energy states of the radiation and the molecular system leads to
the excitation and emission processes. The total rate of emission depends on both,
the spontaneous emission and the stimulated emission. The mean lifetime of the
molecule’s exited state is inversely proportional to this total rate.

2.1.5.1 Absorption and Emission Cross Sections and Fluorescence
Lifetimes

Let us for now model a molecule as a two state system, where there is no degeneracy
associated with any of the states. The absorption cross section of a molecule, σa(ν),
is the measure of the probability that it absorbs energy from the electromagnetic
radiation field incident on it. It provides a relationship between the optical density of
the sample and its concentration in spectroscopic analysis. It has the dimension of
an area which can be interpreted as an effective cross-sectional area responsible for
blocking an incident beam of electromagnetic waves of frequency ν. Let us define
the stimulated absorption rate as

wi→ f (ν)dν = bi f (ν)S(ν)dν (2.25)

where S(ν) is the energy density of the electromagnetic field per unit frequency and
therefore S(ν)dν is the energy density for the frequency range ν to ν + dν. bi f (ν)

is the shape factor for the absorption spectrum of the molecule and represents the
probability for the absorption at frequency ν to take place. The total rate of absorption
is then the integral of the expression above.

Wi→ f =
ˆ

bi f (ν)S(ν)dν (2.26)

The absorption coefficient can be written in terms of direct measurable quantities,
and it is simply the ratio of the total energy absorbed in unit time with the total
incident irradiance I (I = c

´
S(ν)dν).

σa(ν) = hνWi→ f

I
= hν

´
bi f (ν)S(ν)dν

c
´

S(ν)d(ν)
(2.27)



2.1 Quantum Mechanical Picture of Fluorescence 31

If the absorption spectrum is approximated to a line spectrum, bi f is sharply peaked
at ν f i and is equal to B f i , and hence, the absorption cross section can be written as

σa = hν f i

c
Bi f (2.28)

In a similar way, the emission cross section of the molecule can be written in terms
of the emission coefficients

σe(ν) = hν

c
b f i (ν) = c2

8πν2
a f i (ν) (2.29)

The coefficient a f i (ν) is the probability for the molecule in the excited state to decay
spontaneously. Again, for the case of a sharp line spectrum, this is equal to A f i . An
important thing to mention here is that since the emission and absorption for such a
two state system take place at the same frequency, the emission and absorption cross
sections are completely identical σe = σa ≡ σ. In that case, the spontaneous decay
lifetime τ f , i.e. the statistical mean time the molecule stays in the excited state when
there is no perturbation field is inversely proportional to the spontaneous emission
coefficient A f i , or,

1

τ f
= 8π

c2

ˆ
σ(ν)ν2dν = 8πc

ˆ
σ(λ)

λ4
dλ (2.30)

The above equation is known as the Füchtbauer-Ladenburg relationship [14] and it
gives us the means to obtain the radiative lifetime of a two state system from the
measured absorption/emission spectrum. This model works as a good approximation
for the estimation of radiative rates of atomic transitions where the absorption and the
emission take place at the same frequency that can be considered as sharp lines. See
references [15, 16] for example. However, this theory fails to predict the transition
rates for molecular systems accurately. The main reason for this deviation is that
the spectra of the molecules are much broader due to the presence of vibrational
and rotational energy levels within each electronic state. We shall discuss this aspect
further in the next session. But for now, this can be visualized as a collection of many
individual oscillators oscillating at slightly different frequencies that can interactwith
the electromagnetic field and have different transition probabilities. Moreover, the
emission spectrum of a molecule is spectrally red shifted compared to its excitation
spectrum. This is the well known Stokes shift of a fluorescent molecule.

In order to include this effect, Strickler and Berg modified the theory by taking
into account all the vibrational quantum states [17]. The net transition rate is taken
as the sum of the transition rates from the lowest vibrational level of the higher
electronic state to all the possible vibrational levels of the ground state.

A f 0→i = K
8πh

c3

∑
l ν3

k0→nlbk0→nl∑
l bk0→nl

(2.31)
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where the summations are performed over all the vibrational states l of the ground
electronic state, and K is a proportionality constant. Each term in the numerator
is proportional to the intensity in the emission spectrum. Hence, the total rate of
spontaneous decay is written, similar to Eq. (2.30) in the integral form, as

1

τ f
= 8π

c2

´
dν F(ν)´

dν F(ν)/ν3

ˆ
dν σa(ν)/ν (2.32)

where F(ν) are the Franck-Condon factors introduced previously, which shape the
emission spectrum and the integral on the right is over the absorption spectrum of
the molecule. This is the well-known Strickler-Berg equation which connects both
the absorption and emission spectra for determining the average lifetimes of the
molecules in their excited states. One must observe that as a special case, if the
absorption and emission spectra are sharp and take place at the same frequency,
this equation gives the same result as the Füchtbauer-Ladenburg relationship (2.30)
shown above. The integral on the right side can be written in terms of experimentally
measuredmolar extinction coefficients ε(ν). Given the quantumyield of themolecule
and the refractive index of the medium, the Strickler-Berg equation can be written
as

1

τ f
= 2.88 × 10−9n2�

´
dν F(ν)´

dν F(ν)/ν3

ˆ
dν

ε(ν)

ν
(2.33)

where ν is now the wavenumber in cm−1. Figure2.6 shows the spectra for the dye
molecules Rhodamine 6G and Atto 655. The data for Rhodamine 6G has been taken
from [18] and for Atto 655, from the website.1 The quantum yields of these dyes
are reported as 0.95 and 0.33 in the medium of the measurements. The spontaneous
lifetimes calculated from Eq. (2.33) are 3.64 ns and 1.72 ns in water, whereas the true
values reported in literature are 4.1 ns and 1.8 ns, respectively [19].

2.1.5.2 Spontaneous Emission Near Interfaces

In the preceding section we showed the connection between the spontaneous emis-
sion rate of a dipole emitter in empty space and the DOS ρ̃ν . When a molecule is
present in a dielectric medium, the local DOS (LDOS) changes due to the scattering
from the medium which leads to a modification of the spontaneous emission rates.
Depending upon the solvent properties, thermal coupling between the dipole emitter
and surrounding molecules can play a role in non-radiative energy transfer, due to
collisions, known as thermal decay and hence shortening the lifetime of themolecule
in the excited state [20].

The situation becomes complicatedwhen placing such an emitter close to a dielec-
tric or metallic interface. In that case, the spontaneous emission rate A f i will change

1http://www.atto-tec.com/.

http://www.atto-tec.com/
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Fig. 2.6 The left figure shows the excitation/emission spectra of Rhodamine 6G in ethanol and the
right side for Atto 655 in water. The plots are against wavenumbers ν̄ = 1/ λ

and becomes position- and orientation-dependent. Also, the effective DOS will now
be position- and orientation-dependent. One needs to calculate the LDOS in such a
situation and use the relations developed in the previous section. The relation between
the Einstein coefficients and LDOS remain the same as in Eq. (2.24). The properties
of the metal determine the LDOS and depending on the distance from the metal,
the electromagnetic coupling between the states of the dye molecule and the metal’s
surface plasmons varies, which together determine its radiative and non-radiative
rates [21, 22]. However, the calculation of spontaneous emission rate of a dipole
emitter is much more straightforward using the theory by Chance, Prock, and Silbey
(CPS) where one calculates the total emission rates by using Fresnel’s equations
and energy flux density calculations using the Poynting vector [23]. This will the
discussed thoroughly in the forthcoming sections.

2.2 Plane Waves and Maxwell’s Equations

We begin our theoretical outline by highlighting the work of James Clerk Maxwell
who set the groundwork for the electromagnetic theory of light in 1864. In classical
electrodynamics, light is described as an electromagnetic wave (EM wave) with
synchronized oscillations of electric (E) and magnetic (B) fields oriented orthogonal
to each other, traveling with a speed c/nmed along a propagation direction k, where
nmed is the refractive index of the medium, as shown in Fig. 2.7. By synchronized
oscillations, we mean that the fieldsE andB have the same oscillation frequency and
phase. The vector k is orthogonal to both E and B. The classical theory of light is
based on the well knownMaxwell’s equations, which are the fundamental equations
for electricity and magnetism. In CGS units, these equations can be written as
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∇ · εE = 4π ρ (2.34)

∇ · B = 0 (2.35)

∇ × E = −1

c

∂B
∂t

(2.36)

∇ ×
(
B
μ

)
= ε

c

∂E
∂t

+ 4π

c
j (2.37)

where ρ and j are the electric charge and current density respectively, and ε andμ are
the dielectric susceptibility and magnetic permeability of the medium. These four
equations were obtained from the well-known laws for electric and magnetic fields,
the first two equations are Gauss’ law for electric and magnetic fields; the third
equation represents Faraday’s law of magnetic induction and the fourth equation
is Ampere’s circuital law. These four coupled differential equations are satisfied
simultaneously for all possible electromagnetic fields.

Equations (2.34) and (2.35) stem from the fact that electric charges can exist in
space whereas magnetic monopoles do not; and the electric field exiting a volume
is proportional to the charge density present inside it whereas the total flux of the
magnetic field through a closed surface is always zero. Gauss’ law holds true even
for moving charges which makes it more general than Coloumb’s law. The force due
to an electromagnetic field on a charge particle moving with an arbitrary velocity v
is given by the Lorentz force,

F = q[E + (v × B)]. (2.38)

Fig. 2.7 A Schematic showing an electromagnetic wave at a time t with E and B oscillating
orthogonal to the direction of propagation k. The wavelength λ of the EM wave is marked here as
the distance over one complete cycle of oscillation
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An important point to note from Eq. (2.38) is that magnetic field due to any config-
uration of moving or static electric charges is always perpendicular to the direction
of motion, and thus, does not perform any work.

In a source-free homogeneous medium with unity magnetic permeability μ = 1
(which is true for all of the work in this thesis), the simplest solution to Maxwell’s
equations is a plane wave, where the space-time behavior of the electric (E) and
magnetic (B) fields can be written as ∝ exp(ik · r − iω t), where ω is the angular
frequencyof the oscillations. Inserting this space-time relationback into the equations
(2.34), (2.35), (2.36) and (2.37) we get

k · E = 0 (2.39)

k · B = 0 (2.40)

ik × E = iω

c
B (2.41)

ik × B = − iεω

c
E (2.42)

From equations (2.39) and (2.40), it is clear that E, B and k are mutually perpendic-
ular. If we now apply the curl operator again on Eq. (2.36) and use the relations in
equations (2.39) and (2.42), we obtain

∇ × ∇ × E = −k × (k × E) = k2E = −ω

c
(k × B) = ε ω2

c2
E (2.43)

Therefore, fromEq. (2.43)we obtain the amplitude of thewave vector |k| = √
εω /c.

The vector |k| characterizes the spatial periodicity of the electric field. If we define
the refractive index of the medium by nmed = √

ε, we get the dispersion relation
|k| = nmed ω /c and the relation between the amplitudes of the electric and magnetic
fields as |B| = nmed |E|.

For any electromagnetic field, the instantaneous energy flux is given by the Poynt-
ing vector S.

S = c

4π
E × B (2.44)

For visible light S oscillates with a frequency ∼ 1015 Hz, which cannot be measured
with any instrument. What is measurable is the time-averaged energy flux density
〈S〉 (averaged over one period of oscillation) for an electromagnetic field, which is
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given by2

〈S〉 = c

8π
Re{E × B∗} (2.45)

These relations hold true for anyplanewave solution of the electromagnetic field in
a source-free homogeneous environment. Further, any field in such an environment
can be described as a superposition of plane waves. We will use these relations
extensively in our forthcoming sectionswherewe investigate thefieldof anoscillating
electric dipole in such environments.

The interaction of EM waves with conducting media can be understood well
with the help of the Drude model for conductivity. The model is based on the fact
that the valence and the conduction bands of metals overlap at room temperature,
and as a result a large number of free electrons exist that are responsible for their
high conductivity. Therefore, any electromagnetic oscillations incident on a metal
perturb the electrons on the surface which are then set into an oscillation with the
same frequency in order to counter these perturbations. The existence of conductivity
can be taken into account by simply introducing a complex dielectric constant into
Maxwell’s equations. The real of the dielectric constant (ε′) is related to the bounded
electrons and the lattice structure of the metal, whereas the imaginary part arises due
to the free electrons. If we define σ as the specific conductivity of the material, then
the convection current density j is given by

j = σE (2.46)

Note here that σ is a function of frequency since we saw that bound electrons can
be excited into the conduction band. Plugging Eq. (2.46) into Maxwell’s equation
(2.37), we have

∇ × B = − i ω

c

[
ε′(ω) + 4πi

ω
σ(ω)

]
E (2.47)

Using Eq. (2.43) we get the dispersion relation

k2 = k2
0

[
ε′(ω) + 4πi

ω
σ(ω)

]
(2.48)

where k0 = ω /c. The refractive index is thus a complex numberwhich can bewritten
as ñ = n(ω) + iκ(ω).

∴ ñ2(ω) = [n(ω) + iκ(ω)]2 = ε′(ω) + 4πi

ω
σ(ω) = ε(ω) (2.49)

This brings us to the relations

2For derivation refer to “Principles of Optics”, Born and Wolf [24].
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ε′ = n2 − κ2 (2.50)

and,

2πσ

ω
= nκ (2.51)

2.3 Fresnel’s Equations

After having familiarized ourselves with the basic properties of plane waves in a
homogeneous environment, we now study their behavior when they encounter a
locally flat interface separating two homogeneous media with different refractive
indices n1 and n2. The wave vector k again represents a plane wave with a spatial
periodicity of |k| and its propagation direction along the unit vector k̂. Furthermore,
we will use a ‘±’ subscript to indicate the global direction of propagation: “+” when
the wave travels from medium 1 → 2; and “−” when it travels from medium 2 → 1
(see Fig. 2.8). To complete the picture, we must specify the direction of oscillation
(polarization) of either E or B. We consider two explicit cases of polarization, one
where E oscillates in the plane of incidence, I, (B is then pointing out of the plane
of incidence), denoted as the p-wave, or Transversal Electric (TE) wave; and the
other where E oscillates out of the plane (B is then oscillating in the plane of inci-
dence), which is denoted as the s-wave, or Transversal Magnetic (TM) wave. Any
other polarization can be written as a linear combination of these two polarizations.
Figure2.8 represents the generalized situation of the problem where plane waves are
incident from both sides of the interface onto it.

The projection of k on the interface is denoted as q, and the wave-vector compo-
nent perpendicular to it is denoted by ±wi, where the sign follows the same sense of
direction as stated above. Before we get to the boundary conditions for the problem,
we must note that the periodicity along the interface must be conserved, thus q is
equal for all the four wave vectors. In order to simplify the notations in all the dis-
cussion that follows, we will work, without loss of generality, in a unit system where
the length unit is chosen in such a way that the vacuum wavelength of light is 2π,
and thus the length of the wave vector |k| in vacuum equal to one. Using elementary
geometry, one has the following

sin θi = q/ni (2.52)

and

n1
2 − w2

1 = n2
2 − w2

2 (2.53)

where θi are the angles of the wave vectors with respect to the normal of the inter-
face. Equation (2.52) directly gives us Snell’s law of refraction and reflection i.e.
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Fig. 2.8 A schematic representation of plane waves at a dielectric interface between two media
with refractive indices ni (for i = 1, 2). The waves are denoted by their wave vectors k±

i depending
upon their direction with respect to the interface; and the electric field polarizations as E p or Es

depending on their orientations with respect to the plane of incidence I as shown. The vector k±
i is

resolved into two components ±wi and q perpendicular and in the interface

n1 sin θ1 = n2 sin θ2; and the wave vectors k+
1 and k−

1 have the same angle with the
normal, θ1.

Let us now establish the boundary conditions first by considering p-waves. In
order to observe continuity in space, the tangential component of the electric field E
and magnetic field B must be conserved across the interface. Thus we obtain

E+
p,1 cos θ1 − E−

p,1 cos θ1 = E+
p,2 cos θ2 − E−

p,2 cos θ2, (2.54)

B+
p,1 + B−

p,1 = B+
p,2 + B−

p,2 (2.55)

Using the relationship |B| = nmed |E| and the fact that cos θ1,2 = w1,2

n1,2
, we get

w1

n1
E+

p,1 − w1

n1
E−

p,1 = w2

n2
E+

p,2 − w2

n2
E−

p,2, (2.56)

n1E+
p,1 + n1E−

p,1 = n2E+
p,2 + n2E−

p,2 (2.57)

These equations can be written in a compact matrix form as
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(
w1
n1

−w1
n1

n1 n1

) (
E+

p,1

E−
p,1

)
=

(
w2
n2

−w2
n2

n2 n2

) (
E+

p,2

E−
p,2

)
(2.58)

Performing necessary matrix operations, Eq. (2.58) can be rewritten as

(
E+

p,1

E−
p,1

)
= 1

2

(
w
n + n −w

n + n
−w

n + n w
n + n

) (
E+

p,2

E−
p,2

)
(2.59)

where we use the notation w = w2/w1 and n = n2/n1. Let us denote the matrix in
the Eq. (2.59) as M̂p for future reference. In the special case when an EM wave is
incident from the side of the interface where the refractive index is n1, we have

(
E+

p,1

E−
p,1

)
= M̂p

(
E+

p,2

0

)
(2.60)

Defining reflection and transmission coefficients as R = E−
1 /E+

1 and T = E+
2 /E+

1 ,
we obtain

Rp = n2 − w

n2 + w
, (2.61)

and

Tp = 2n

n2 + w
(2.62)

For the case of s-waves, the boundary conditions can be written similar to equa-
tions (2.54) and (2.55) as

E+
s,1 + E−

s,1 = E+
s,2 + E−

s,2 (2.63)

w1E+
s,1 − w1E−

s,1 = w2E+
s,2 − w2E−

s,2, (2.64)

Writing in the matrix form, we obtain,

(
E+

s,1
E−

s,1

)
= 1

2

(
1 + w 1 − w

1 − w 1 + w

) (
E+

s,2
E−

s,2

)
(2.65)

and the reflection and transmission coefficients are now given by

Rs = 1 − w

1 + w
, (2.66)

and
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Ts = 2

1 + w
(2.67)

Fig. 2.9 shows the reflection coefficients as a function of incident angle θ1, or
cos−1(w1/k1). From Eq. (2.61) we find that Rp is zero when w = n2 or cos θ1/n1 =
cos θ2/n2, which can be seen in both cases of incidence as shown in the figure.
The angle of incidence where the reflection coefficient vanishes is called Brewster’s
angle. Since from Snell’s law we have n1/n2 = sin θ2/ sin θ1, the situation only
occurs when θ1 + θ2 = π /2 or n2/n1 = tan θ1.

2.3.1 Total Internal Reflection

From Eq. (2.59), we get the amplitude of the E+
p,2

E+
p,2 = ê+

p,2

2E+
p,1

w/n + n
(2.68)

where ê+
p,2 = w2q̂−qẑ

n2
is the unit vector along the polarization of the p-wave E+

p,2.
Ignoring the time variation, the refracted plane wave can be written as∝ exp(−ik+

2 ·
r). Observing that k+

2 = qq̂ + w2ẑ, we can rewrite the exponential term as exp(iq ·
ρ+iw2z), where ρ is the two dimensional vector component of rwithin the interface.
Using Eq. (2.53), w2 can be written as

w2 =
√

n2
2 − n2

1 + w2
1 (2.69)

Fig. 2.9 Calculated reflection coefficients Rp and Rs as a function of the incident angle θ1 for an
air/glass interface for incidence from the air medium (left) and from the glass medium (right). The
angle where the reflection coefficient for the p-waves is zero is the Brewster’s angle. The critical
angle θc, above which total internal reflection occurs is shown as well
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Fig. 2.10 The phase shift between the incident and the reflected p- and s-waves at the interface
separating air and glass (n = 1.52). The plot shows for θ > θc, below which the phase shift is zero
for both waves

This implies that w2 becomes purely imaginary if w1 <

√
n2
1 − n2

2. In this case, the
spatial field dependence for the EM field represents a wave propagating along the
interface in the plane of incidence (i.e. along the direction of q̂), but exponentially
decaying perpendicular to the interface (along the z-axis). The amplitude decreases
rapidly with the depth z, and the effective penetration depth is on the order of one
wavelength. The wave is not transversal and is termed an evanescent wave. Remark-
ably, there is no transfer of energy across the interface and this phenomenon is called
Total Internal Reflection (TIR). This can be shown by calculating the projection of
the time averaged Poynting vector onto the normal of the interface, which is given
by the expression

c

8π
Re

{
(E × B∗)

w2

n2

}
= c

8π
Re

{
n2|E|2 w2

n2

}
= 0 (2.70)

In the special situation when w1 =
√

n2
1 − n2

2 or sin θ1 = n2/n1 the wave prop-

agates along the direction q̂, where total internal reflection starts, and the angle
satisfying this condition is called “critical angle” (see Fig. 2.9).

It is important to note here that when TIR occurs, there is a phase shift between
the incident and reflected waves. From the matrix equation (2.59) we get

E+
p,1

E+
p,2

= 1

2

(w

n
+ n

)
(2.71)
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E−
p,1

E+
p,2

= 1

2

(
−w

n
+ n

)
(2.72)

Since, w is imaginary, each factor contributes to an additional phase term exp(±iφ)

and a total phase shift between the incident and reflected wave as

�φp = −2 tan−1

(
Imw

n2

)
(2.73)

Similar is the case for s-waves and one can calculate the phase shift as

�φs = −2 tan−1 (Imw) (2.74)

Figure2.10 shows the calculated phase shifts for p-waves and s-waves at different
incident angles. Since there is a phase shift between the incident and the total inter-
nally reflected rays, an interference is observed which leads to a shift in the reflected
beam in the plane of the incidence towards the direction of propagation, which is
known as Goos-Hänchen Shift.

2.3.2 Thin Layers and Frustrated Internal Reflection

We now consider the case where there are several thin layers stacked on top of each
other. For the beginning, let us first consider the casewhere light traverses through two
interfaces as shown in Fig. 2.11, separating three dielectric media (ni , i = 1, 2, 3).
To complete the picture, let us assign a thickness d for medium 2 sandwiched in
between. Writing the transfer matrix for a p-wave at the second interface (between
media 2 and 3), we have

(
E+b

p,2

E−b
p,2

)
= 1

2

( w23
n23

+ n23 −w23
n23

+ n23

−w23
n23

+ n23
w23
n23

+ n23

) (
E+

p,3

E−
p,3

)
(2.75)

where E±b
p,2 are electric fields at the second interface traveling in themedium2 towards

(+) and away (−) from the interface, wi j = wi/w j and ni j = ni/n j . Similarly, at
the first interface, another transfer matrix can be constructed

(
E+

p,1

E−
p,1

)
= 1

2

( w12
n12

+ n12 −w12
n12

+ n12

−w12
n12

+ n12
w12
n12

+ n12

)(
E+t

p,2

E−t
p,2

)
(2.76)

where now E±t
p,2 are electric fields at the first interface traveling in the medium 2

towards (+) and away (-) from the interface.
The connection between the two sets of fields inside the medium 2 is given by the

phase difference when a wave travels a distance d in the medium.
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Fig. 2.11 A thin dielectric layer with refractive index n2 is situated between two materials with
refractive indices n1 and n3. The electric field vectors for the light rays above and below the first
and second interface are shown here together with their polarizations

(
E+b

p,2

E−b
p,2

)
=

(
e−iw2d 0

0 eiw2d

) (
E+t

p,2

E−t
p,2

)
(2.77)

where w2 is the z-component of the wave-vector k2 in the medium. If w2 is real then
the matrix simply represents the phase accumulation for a plane wave propagating
through the homogeneous medium of index n2. Thus, the field in medium 3 can be
written in terms of the field in medium 1 as

(
E+

p,1
E−

p,1

)

= 1

4

(
w12
n12

+ n12 − w12
n12

+ n12

− w12
n12

+ n12
w12
n12

+ n12

) (
e−iw2d 0

0 eiw2d

) (
w23
n23

+ n23 − w23
n23

+ n23

− w23
n23

+ n23
w23
n23

+ n23

)(
E+

p,3
E−

p,3

)

(2.78)

Before proceeding further, let us examine two important phenomena here. For the
first case, let us assume that n3 = n1 > n2. The transfer matrix M̂p for p-waves,
considering boundary conditions for both the interfaces can be written as

M̂p =
(

w
n + n −w

n + n
−w

n + n w
n + n

) (
e−iφ2 0
0 eiφ2

) ( n
w

+ 1
n − n

w
+ 1

n− n
w

+ 1
n

n
w

+ 1
n

)
(2.79)

where w = w2/w1 and n = n2/n1 and φ2 = w2d. Now, when there is TIR (i.e. w2

is imaginary), the propagation matrix carries the loss of amplitude in the EM field
when the plane wave propagates through the medium. M̂p can be simplified into the
form of a 2 × 2 matrix as
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M̂p =
(

A B
B∗ A∗

)
(2.80)

where A = cosφ2 − i/2
(
w/n2 + n2/w

)
sinφ2, B = −i/2

(
w/n2 − n2/w

)
sinφ2.

The matrix looks much similar for s-waves, M̂s can be obtained by putting n = 1 for
the expressions of A and B. As we stated in the previous section, evanescent waves
do not transmit any energy across the interface. However, if there is a third optically
denser medium present, within one wavelength distance, from the first optically
denser medium, these evanescent waves couple through and the energy is transmitted
through the thin intermediate layer into the thirdmedium.This phenomenon is similar
to quantum tunneling and is called frustrated internal reflection, the term “Frustrated"
appearing here due to the loss of energy in the reflected wave in the first optically
rarer medium due to the effective evanescent-wave coupling. We will encounter this
phenomenon later when discussing the interaction of en emitting electric dipole with
a stack of layers.

In the case where E−
3 = 0, one has E+

1 = A · E+
3 . Therefore, the transmission

coefficients are simply given by

Tp,s = E+
3,(p,s)

E+
1,(p,s)

= 1

Ap,s
(2.81)

Let us next consider the case where n1 = n3 < n2. In this case, the component
of the wave vector parallel to the interface q inside the thin layer can exceed the
maximum possible q = k1 in the media with the lower refractive index. Thus, if
one considers a wave such that k2 ≥ q > k1, one has total internal reflection at
the interfaces. The evanescent waves outside cannot transfer energy away from the
stack, and therefore one has multiple reflections inside the thin layer which acts as a
waveguide. However, only for a few values of q, the sandwiched medium acts as a
waveguide. These values depend on the thickness of the layer, the refractive indices
of all the media involved and the polarization of the electric field inside the thin layer.
These values can be found by realizing the conditions that E+

3 �= 0, E+
1 = 0, which

can be done by finding the solutions of A = 0. For p-waves, we have

Ap = cos(w2d) − i

2

(
w

n2
+ n2

w

)
sin(w2d) = 0 (2.82)

where w2 =
√

n2
2 − q2 and k2 ≥ q > k1. The modes for the case of s-waves can be

found similarly by solving for As = 0, where As is given by the expression

As = cos(w2d) − i

2

(
w + 1

w

)
sin(w2d) (2.83)
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2.3.3 Fresnel’s Equations for a Metal Surface

Let us now study the reflection and transmission properties of plane waves upon
incidence on a metal surface. We follow the same notation as in all our previous
sections (for example Sect. 2.3) and define n1 as the dielectric medium above the
interface and ñ2 = n2 + iκ2 as the refractive index of the metal at a frequency ω. Let
us first consider the case of p-waves. The electric field of a plane wave in medium
2 can be written as

E±
p,2(r, t) = E±

p,2ei(k±
2 ·r−ω t)ê±

2p (2.84)

Thewave vector k2± can bewritten as k±
2 = qq̂±w2ẑwhere q is the projection of the

wave vector onto the interfacewhosemagnitude is given by q = n1 sin θ1 = ñ2 sin θ̃2

andw2 =
√

k2
2 − q2. Therefore,k2±·r = q(q̂·ρ)±w2z, whereρ is a two dimensional

vector within the interface. Using this relation, the electric field in the metal can be
written as

E±
p,2(r, t) = E±

p,2ei[q(q̂·ρ)−ω t]e±iw2z ê±
2p = E±

p,2ei[q(q̂·ρ)±Re(w2)z−ω t]e∓Im(w2)z ê±
2p

(2.85)

Before proceeding further, we must understand the behavior of the electric fields
represented by Eq. (2.85). The first part of the expression on the right represents
a plane wave propagating in the direction of ρ̂ with a wave vector q; whereas the
second part represents a phase shift (real part ofw2) and an exponential modification
of the magnitude (imaginary part ofw2) of the electric field E±

p,2 with its propagation
along z-direction. Themagnitude entirely depends on the sign of the quantity Im{w2}
where,

w2 =
√

(n2
2 − κ2

2 − q2) + 2in2κ2. (2.86)

The sign of the imaginary part of w2 depends on the sign of the term n2κ2 (principal
square root). From Eq. (2.51), we see that this product is directly proportional to
the specific conductivity which cannot be a negative number. This leads to the fact
that the magnitude of E+

p,2 declines with increasing z and for the case of E−
p,2, the

magnitude falls exponentiallywith the decrease of z. In otherwords, themagnitude of
an electromagnetic wave penetrating the metal surface (z > 0), falls of exponentially
with depth. The magnitude falls down by a factor of e−1 for z = 1/Im{w2}. For
normal incidence, Im{w2} = κ2 ω /c and hence, κ(ω) is also called the extinction
coefficient. It represents the attenuation of the electromagnetic waves propagating
through the medium.

While deriving Fresnel’s equations for the reflection and transmission of plane
waves for a metal surface, one must observe the same boundary conditions for the
electric and magnetic fields at the interface as given in Sect. 2.3. The equations (2.54)
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to (2.64) can be written similarly for the case of a complex refractive index, and the
transformation matrix approach we built in that section is valid here. Hence, the
reflection coefficient for the case of p- and s-waves respectively is given by

Rp = ñ2 − w̃

ñ2 + w̃
(2.87)

and,

Rs = 1 − w̃

1 + w̃
(2.88)

where we used w̃ = w2/w1 and ñ = n2/n1. Figure2.12 shows the reflectivity
(R · R∗) and phase shift �φ for p- and s-waves on a gold/air interface as a function
of wavelength and incident angle θ1. For normal incidence (θ1 = 0), � = �φp −
�φs = −π, whereas for grazing incidence, � = 0. Between these two extreme
cases, there exists an angle θi when � = −π /2 and therefore a linearly polarized
light is reflected as an elliptically polarized light. This angle is, in general, where
the reflection coefficient for the p-waves is a non-zero minimum, and is called the
principle angle of incidence [24].

2.4 The Oscillating Dipole

Any change of charge or current distribution in space produces an EM radiation. The
most fundamental source of an EM wave is an oscillating electric dipole. Almost all
fluorescent organic dyes can be well described as ideal electric dipole oscillators. In
this section we extensively study the behavior of an oscillating electric dipole in a
homogeneous environment which will be vital for our further theoretical discussion
and the work in this thesis.

2.4.1 Dipole in a Homogeneous Environment

Let us consider a dipole at position r = 0 oriented along the z-axis with a distance d
between its two equal but opposite charges (+q and −q) that are oscillating around
the center with a frequency ω. We first derive the field E(r) when the time is frozen,
i.e. the positions of the two charges are fixed in space. The potential ψ at a position
r away from the dipole can be written as

ψ(r) = 1
ε

q

[
1

|r − z+| − 1

|r − z−|
]

= 1
ε

q

[ |z− − z+| cos θ

|r − z+| |r − z−|
]

(2.89)
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Fig. 2.12 Surface plots and contours showing the reflectivity and phase shifts for p- and s- waves
on a gold/air interface. For each wavelength, the reflectivity |Rp|2 reaches a non-zero minimum at a
certain incidence angle θi as can be seen from the top-left surface plot. The bottom two plots show
the phase shift for p- and s-waves

where z± are the positions of the point charges, and θ is the angle between the line
joining position r to the position of the dipole and the axis of the dipole. When the
point of interest is far away from the dipole (r >> d), the product |r − z+| |r − z−|
can be simply approximated as r2. Therefore, the Eq. (2.89) can be written as

ψ(r) = p cos θ

ε r2
(2.90)

p is the dipole moment defined as p = qd, where d = z− − z+. The electric field E
for the dipole can be calculated in the following way

E(r) = −∇ψ = −
(
r̂

∂

∂r
+ θ̂

1

r

∂

∂θ

)
ψ = 2p cos θ

ε r3
r̂ + p sin θ

ε r3
θ̂ (2.91)

Now p cos θ can be written as r̂ · p and p sin θθ̂ as r̂ × (r̂ × p). Substituting these
identities in the Eq. (2.91) gives the relation
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Fig. 2.13 Contour plot of electrostatic potential of a static dipole oriented horizontally showing
electric field lines. The red and blue circles represent the positions of positive and negative charges
respectively. The arrows show the direction and magnitude of electric field lines

E(r) = 2r̂(r̂ · p)

ε r3
+ r̂ × (r̂ × p)

ε r3
= 3r̂(r̂ · p) − p

ε r3
(2.92)

This represents the field of a static electric dipole and it is a stationary electric
field where no propagating EM radiation is generated. The static field is present close
to the dipole whose strength decays rapidly as a r−3 distance relationship form the
center of the dipole. The time-averaged Poynting vector is proportional to r−6. No
energy is transported away from the dipole in this case because anything that falls of
faster than r−2 cannot carry energy away (Fig. 2.13).

EMwaves are generated by non-stationary sources such as a non-uniformly mov-
ing point charge or an oscillating dipole. If we nowwant to calculate the EM radiation
of an oscillating dipole, we need to take into account its temporal variation. Given
non-zero ρ(r, t) and j(r, t), which are now functions of time, it is not so straight-
forward to obtain unique solutions for the fields E(r, t) and B(r, t) from Maxwell’s
equations presented in Sect. 2.2. Information travels with a finite speed and is delayed
in time and in order to incorporate time-varying dipolemoments, one needs to involve
retarded potentials with suitable gauge conditions. Here, we present an alternate way
for obtaining the EM radiation which does not involve such a theoretical complexity.

Representing the time-variation of the oscillating dipole by the usual complex-
valued notation e−iωt the positions of the two charges can be written as

z± = ±d

2
e−i ω t (2.93)

and their respective velocities by
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v± = dz±
dt

= ∓i
d

2
ω e−i ω t (2.94)

The current density, j is given by the sum of the product of charges with their
respective velocities. Therefore,

j = −iqd ω e−i ω t = −i p ω e−i ω t (2.95)

where p = qd is the amplitude of the dipole moment. The dipole moment vector
p is oriented along the direction from the negative to the positive charge. Therefore
the vector j can be written as

j = −i ωpe−i ω t
δ(r) (2.96)

where,

δ(r) =
ˆ

d3k

(2π)3
eik·r (2.97)

is the Dirac delta function in three dimensions.
Let us now recall Maxwell’s equations from Sect. 2.2 and apply to our oscillating

dipole system. E(r, t) can be written as E(r)e−i ω t . Setting μ to unity (we consider
non-magnetic materials in this thesis only), Eqs. (2.36) and (2.37), using Eq. (2.96)
can be written as

∇ × B = 4π

c
j + 1

c

∂E
∂t

= −4π ik0p δ(r) − ik0E (2.98)

∇ × E = −1

c

∂B
∂t

= ik0B (2.99)

where we set k0 = ω /c. Using equations (2.98) and (2.99) we get

∇ × ∇ × E = ik0∇ × B = ε k2
0E + 4π k2

0p δ(r) (2.100)

Applying a spatial Fourier transform to the above equation, we get

−k × k × Ẽ − ε k2
0Ẽ = (k2 − ε k2

0)Ẽ − k(k · Ẽ) = 4π k2
0p (2.101)

Multiplying both sides of Eq. (2.101) with k, this simplifies to

k · Ẽ = −4π

ε
k · p (2.102)

Substituting Eq. (2.102) back in (2.101) we obtain
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Ẽ = 4π

ε(k2 − ε k2
0)

[
ε k2

0p − k(k · p)
]

(2.103)

Passing back to real space from Fourier space, E(r) can be obtained using

E(r) =
ˆ

d3k

(2π)3
Ẽ(k)eik·r

Using Eq. (2.103) we get

E(r) = 4π

ε

ˆ
d3k

(2π)3
ε k2

0p − k (k · p)
(
k2 − ε k2

0

) eik·r (2.104)

Now, one can observe that

∇ · (
peik·r) = i(k · p)eik·r

and therefore,

∇ (∇ · (peik·r)
) = −k(k · p)eik·r (2.105)

Using the last relationship, one can write the electric field E(r) as

E(r) = 1

2π2 ε

(
ε k2

0 + ∇ (∇·))
[
p
ˆ

eik·r

k2 − ε k2
0

d3k

]
(2.106)

The integral on the right hand side can be simplified by switching into spherical co-
ordinate system such that the vector r is along the polar axis and the dipole oriented
at an angle α to this direction. Thus, k can be written as

k = k (sin θ cosφ, sin θ sin φ, cos θ)

∴ k · r = kr cos θ

Using this, the integral can be treated as

ˆ
eik·r

k2 − ε k2
0

d3k =
ˆ ∞

0
dk k2

ˆ π

0
dθ sin θ

ˆ 2π

0
dφ

eikr cos θ

k2 − ε k2
0

= 2π
ˆ ∞

0
dk k2

ˆ π

0
dθ sin θ

eikr cos θ

k2 − ε k2
0

by making the substitution ζ = cos θ in the second integral, we get
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Fig. 2.14 Closed contour showing the inclusion of the pole at +√
εk0 for our integration

ˆ
eik·r

k2 − ε k2
0

d3k = 2π

ˆ ∞

0
dk k2 1

ikr

eikr − e−ikr

k2 − ε k2
0

= 2π

ir

ˆ ∞

0
dk k

eikr − e−ikr

k2 − ε k2
0

= 2π

ir

[ˆ ∞

0
dk k

eikr

k2 − ε k2
0

−
ˆ ∞

0
dk k

e−ikr

k2 − ε k2
0

]

Substituting in the second integral −k with k, we finally get

ˆ
eik·r

k2 − ε k2
0

d3k = 2π

ir

ˆ ∞

−∞
dk k

eikr

k2 − ε k2
0

(2.107)

The right hand side of Eq. (2.107) represents an integral over complex plane with
two singularities k = ±√

εk0. Using Cauchy’s residue theorem,3 we select a contour
which includes only the outgoing waves from the dipole, which are physically rea-
sonable. i.e. the pole at k = +√

εk0, as shown in Fig. 2.14. Since r is always positive,
we take the positive imaginary values for k so that eikr → 0 when |Im(k)| → ∞.

2π

ir

ˆ ∞

−∞
dk k

eikr

k2 − ε k2
0

= 2π

ir

‰
�

dk k
ei

√
εk0r

k2 − ε k2
0

(2.108)

= 2π2 eikr

r
(2.109)

3If f (z) has singularities at N points in space, then

1

2π i

˛
C

f (z)dz =
N∑

n=1

Res( f, zn)

Refer to “Complex Analysis” by Ahlfors [25].
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Putting Eq. (2.109) in (2.106) we obtain the expression

E(r) = 1
ε

(
k2 + ∇ (∇·))

[
p

eikr

r

]
(2.110)

where we used k = √
εk0. When explicitly performing the differential operations on

the r.h.s., one obtains

∇ (∇·)
[
p

eikr

r

]
= ∇

[(
ik

r
− 1

r2

)
(p cosα) eikr

]

=
[(

−k2

r
− 2ik

r2
+ 2

r3

)
(p cosα) r̂ − 1

r
(p sinα) θ̂

(
ik

r
− 1

r2

)]
eikr

=
[(

−k2

r
− 2ik

r2
+ 2

r3

) (
p · r̂) r̂ − 1

r
r̂ × (

r̂ × p
) (

ik

r
− 1

r2

)]
eikr

Finally, using the expansion r̂× (
r̂ × p

) = r̂(r̂ ·p)−p rearranging the terms, we
find the electric field E(r, t) of the dipole

E(r, t) =
{

k2

r

[
p − r̂(r̂ · p)

] +
(

ik

r2
− 1

r3

) [
p − 3r̂(r̂ · p)

]}
eikr−i ω t (2.111)

Equation (2.111) represents the complete electric field of an oscillating electric
dipole. As one can see, if we set k = 0, it reduces to the electric field of a sta-
tic dipole (2.92). This is where the velocity of light c = 1/

√
ε comes into the picture.

If one takes c = ∞, k = 0 and the solution to the potential is an instantaneously
varying static field governed by the dipole moment p at any time t .

The terms scaling with r−2 and r−3 constitute the near-field of the dipole which
plays a major role when considering its interactions with another oscillating dipole in
its vicinity or in an inhomogeneous environment such as close to a surface or inside
a nanocavity. The part of the field scaling with r−1 is the far-field component which
contributes to the transport of radiation energy away from the dipole.

The magnitude of the electric field depends on the length of the vector[
p − r̂(r̂ · p)

]
which can be written as p sinα where, α is the angle between p

and the vector towards the point of interest r as shown in Fig. 2.15. It also scales
as the inverse of the distance r. The direction of the field points towards the vector
r̂× (p̂× r̂) which is perpendicular to r in the plane containing both the vectors r and
p. Thus, the amplitude of the electric field

∣∣E(p̂)
∣∣ along the direction of the dipole

moment is zero at all times. Figure2.16 shows the magnitude of the electric field in
the plane of a dipole at a fixed time. The waves are propagating radially away from
the center of the dipole with the electric field vector E(r) pointing in the direction
perpendicular to the position vector r at each point.

The magnetic field can be derived by taking the curl of the electric field in
Eq. (2.110) as follows
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B(r) = c

i ω
∇ × E(r) = 1

ik0
∇ ×

[
1
ε

(
k2 + ∇ (∇·))

[
p

eikr

r

]]

Since∇×(∇a), where a is a scalar field, is always zero, the above equation reduces to

B(r) = k2

ik0 ε
∇ ×

[
p

eikr

r

]
. (2.112)

Assuming again that the dipole is along the ẑ, this brings us to the expression

B(r, t) = r̂ × p
nmed

(
k2

r
+ ik

r2

)
eikr−i ω t (2.113)

Note that here we used the relations k = k0
√

ε and
√

ε = nmed. The magnetic
field lines can be drawn as concentric circles around the dipole vector p where the
magnitude at point r is ∼ p sinα/r pointing normal to the plane containing r and
p. This result is also consistent to the fact that the field B is always perpendicular to
the motion of charges or current direction. Thus the magnetic field does not perform
any work on the oscillating dipole.

So far, we derived the complete radiation field of an oscillating dipole in a classical
framework. Next we are interested in the angular distribution of the energy radiated
away from the dipole, which we will consider in the following section.

2.4.1.1 Angular Radiation Distribution of an Oscillating Dipole

The magnitude of the Poynting vector |S| is proportional to nmed |E|2 and it points
along the propagation direction k̂. Before we calculate the average power radiated

Fig. 2.15 A schematic showing the orientations of the dipole moment vector p, and its projection
along the line of sight r. The vector shown in red represents the direction and the magnitude of the
electric field vector E(r). The magnetic field B(r) points into the plane of the paper as shown. The
Poynting vector S(r) always points in the direction of r̂
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Fig. 2.16 Contour plot showing the magnitude of the far-field component of an oscillating dipole’s
electric field which is oriented along ẑ. The radius of the image is ≈ 2.5λ

by an oscillating dipole, it is important to mention that the fast decaying near-field
components which scale with the distance as r−2 and r−3 do not contribute in the
transport of energy away from the dipole, since the surface integrals of these com-
ponents over a sphere of say radius r yield a net flux proportional to r−2 and r−4

respectively which vanish for large values of r (r � λ). Thus these near-field com-
ponents are also termed the non-propagating components which can be neglected in
the current section where we consider dipole oscillating in a homogeneous space.
However, these near-field terms play a key role when studying dipole-dipole inter-
actions and resonance energy transfer (such as FRET), or when considering dipoles
situated close to an interface separating a dielectric or conducting medium. We shall
study the latter situations closely in the forthcoming sections which will complete
our theoretical foundation for Metal-Induced Energy Transfer (MIET). For now, we
can approximate the electric and magnetic fields around an oscillating dipole as

E(r) ∼ k2 [
p − r̂(r̂ · p)

] eikr

r
and (2.114)

B(r) ∼ k2
[
r̂ × p

] eikr

rnmed
(2.115)

Therefore the far-field Poynting vector is given by

S(r) ∼ ck4

8πr2nmed
r̂
[

p2 − (r̂ · p)2
]

(2.116)

= ck4 p2 sin2 θ
8πr2nmed

r̂ (2.117)
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Fig. 2.17 The angular distribution of radiation from a dipole which is oscillating along the double
arrow in the center. The distance of the surface from the center represents the probability of obtaining
an emitted photon when the dipole is repeatedly excited. It follows the sin2 α law, where α is the
angle measured from the dipole moment vector p

Thus S(r) points away from the dipole’s position and towards the point of interest.
The magnitude of the flux density declines as the inverse of the square of the distance
from the dipole. The total power radiated from an oscillating dipole is obtained by
integrating the radial component of the Poynting vector over the sphere with radius
r , and since the vector S is always normal to the surface, we have

S =
ˆ π

0
dα sinα

ˆ 2π

0
dφ r2

ck4 p2 sin2 α

8πr2nmed
= 1

3nmed
ck4 p2. (2.118)

Replacing k by
√

εk0, we have

S = 1

3
cnmedk4

0 p2. (2.119)

The angular distribution of the power per solid angle d� is given by

r2dS

sinαdαdφ
= cnmedk4

0 p2

8π
sin2 α (2.120)

which directly gives the sin2 α dependence of the radiation power from the dipole,
where α is measured from the dipole’s axis. Thus, the angular distribution looks like
a torus with its axis along the dipole moment vector p. This is shown in Fig. 2.17.

The total power radiated by the dipole can also be calculated using the integral
over the normal component of the time-averaged Poynting vector through a surface
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enclosing the source

S =
‹

(〈S〉 · n̂)dA (2.121)

Using the Divergence theorem,4 this can be written as

S =
ˆ

V
〈∇ · S〉 dV = c

4π

ˆ
V

〈∇ · (E × B)〉 dV

= c

4π

ˆ
V

〈[(∇ × E) · B − E · (∇ × B)]〉 dV

Plugging in Maxwell’s equations and taking the time average, this yields

S = −1

2
Re

(ˆ
V
E · j∗dV

)
(2.122)

where j is the current density in the source. Thus, the radiation power is equal to
the negative work done per unit of time by the field acting on the source. Using the
current density for the oscillating dipole given by the Eq. (2.96), the total power can
be written as

S = 1

2
ωp · Im (E) (2.123)

From a physics point of view, the above equation translates into the fact that the
power radiated by an electric dipole is proportional to that component of the electric
field which is along the direction of the dipole’s axis and which is by π /2 out of
phase with respect to the oscillation of the dipole moment.

Themost important point to note from the Eq. (2.119) is the k4 ∼ λ−4 dependence
of the radiation power. The same law holds true for Rayleigh scattering theory of
light, such as on density variations, which are smaller in size than the wavelength
of the EM radiation scattered by them. Rayleigh scattering results from the electric
polarization of the gas molecules due to their interaction with the radiation causing
them to behave as oscillating dipoles. Thus, the above theory can be also applied
to calculate the field around scattering particles. As shown in the above relation,
the scattering cross section increases inversely proportional to the fourth power of
the wavelength, and therefore the sky appears blue in color. Another interesting
observation is the direct dependence of the radiation power on the refractive index
of the medium. A dipole radiates more energy per unit of time if it is situated inside
a medium of higher refractive index such as glass (n = 1.5) or water (n = 1.33). In
a quantum mechanical picture, this translates to the fact that the excited molecules

4If F is a continuously differentiable vector over a volume V and its neighborhood, then
´

v(∇ ·
F)dV = ‚

A(F · dA), where the vector element dA points normal at each point to the surface of the
volume V . For derivation, refer to [26].
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return faster from their excited state to the ground state when placed in such media.
In other words, the average lifetime of the excited state τ f is shorter in water or glass
as compared to air. The purely radiative decay rate, or spontaneous emission rate
of a classical dipole oscillator is given by the ratio of the average radiation power
of the dipole and its total initial energy. Assuming no damping in the oscillations,
which will be considered in a later section, the spring constant is given by k = ω2 m,
where m is the effective mass of the dipole and ω is the angular frequency of the
oscillating spring system. If x0 is the initial oscillation amplitude, the initial energy
of the oscillation system is given by

U0 = 1

2
kx2

0 = 1

2
m

2
ω

p2
0

q2
. (2.124)

The radiation power is the rate of change of this initial energy which is given by
Eq. (2.119).

∴ dU

U0
= −2

3

q2 ω2 nmed

mc3
dt (2.125)

which gives us the radiative rate κ0 of the dipole.

κ0 = 2

3

q2 ω2 nmed

mc3
(2.126)

which is the inverse excited state lifetime (if there are no other de-excitation
channels).

In the next section, we will study the behavior of a dipole emitter situated close
to an interface separating two such dielectric media.

2.4.2 Dipole on a Planar Dielectric Interface

So far, we studied the properties of a dipole oscillating in a homogeneous environ-
ment. For our discussion in this section, let us consider a dipole situated on top of an
interface separating the upper media (z < 0) with dielectric constant ε1 and a lower
medium (z > 0) with dielectric constant ε2. Let the dipole moment vector be p at
position r0. Let us further consider that r0 is a point in the medium 1, z0 < 0. First,
we write down the plane wave representation of the dipole’s field in a homogeneous
space with a dielectric constant ε1 using (2.104).

E(r) = 4π

ε1

ˆ
d3k

(2π)3
ε1 k2

0p − k (k · p)
(
k2 − ε1 k2

0

) eik·R (2.127)
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Fig. 2.18 The general geometry of the vectors considered in this section. The interface separates
two media ε1 and ε2 as shown. The unit vectors ê

±
i p represent the directions of electric field vectors

in the plane of incidence, whereas the unit vectors ês point in the direction perpendicular to the
plane of incidence. θ1 and θ2 are the angles of the vectors k+

1 and k+
2 with respect to the normal

of the interface, and ψ is the angle the plane of incidence makes with respect to a fixed x-axis. r0
marks the position of the dipole p. Note that p is doubly degenerate, and hence we show using a
double arrow

where R = r − r0. Let us denote, as before, by q and w the horizontal (parallel to
the interface) and vertical (orthogonal to interface) components of the wave vector
k. Performing in the above plane wave representation the integration over w and
applying Cauchy’s residue theorem leads to the so-called Weyl representation of the
electric field of an oscillating dipole in homogeneous space,

E(r) = i

2π ε1

ˆ
d2q

[
k2
1p − k±

1 (k±
1 · p)

]

w1
ei[q·(ρ−ρ0)−w1|z−z0|] (2.128)

where k±
j = {q,±w j } and w1(q) =

√
k2
1 − q2 with k1 = √

ε1k0, and k1+ applies

for z > z0 and k1− applies for z < z0. When applying Cauchy’s residue theorem, we

have taken into account only the polew1 = +
√

k2
1 − q2 with positive real or positive

imaginary value so that the Weyl representation integrates only over outgoing (or
with distance exponentially decaying) planewaves, but not incomingor exponentially
increasing plane waves (Fig. 2.18).

The vector k2
1p − k±

1 (k±
1 · p) is a projection of p perpendicular to the direction

of k±
1 , and can thus be expanded into a system of two orthogonal unit vectors which

are both orthogonal to k±
1 , in particular
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ê±
1p = 1

k1

(±w1qx

q
,
±w1qy

q
,−q

)

and

ês = 1

q
(−qy, qx , 0)

Both these vectors are indeed perpendicular to k±
1 = {

qx , qy,±w1
}
, whereas ê±

1p lies
within the plane which is spanned by k±

1 and the normal to the interface (p-wave),
and ês lies parallel to the interface (s-wave). Thus, the Weyl representation can be
rewritten as

E(r) = ik2
0

2π

¨
dq
w1

[
ê±
1p(ê

±
1p · p) + ês(ês · p)

]
ei[q·(ρ−ρ0)+w1|z−z0|] (2.129)

Now it is obvious that theWeyl representation (2.129) is an expansion of the dipole’s
electric field over plane p- and s-waves. If w1 is imaginary, they are which decay
exponentially with distance away from the plane of the dipole (z = z0). In order to
calculate the complete field, one now needs to calculate the fields reflected by and
transmitted through the interface, which can be done in a straightforward way by
using Fresnel’s relations that we had derived in Sect. 2.3. These fields are given by

ER(r) = ik2
0

2π

¨
dq
w1

[
ê−
1p Rp(ê

+
1p · p) + ês Rs(ês · p)

]
ei[q·(ρ−ρ0)+w1|z0|−w1z],

(2.130)

and

ET (r) = ik2
0

2π

¨
dq
w1

[
ê+
2pTp(ê

+
1p · p) + ês Ts(ês · p)

]
ei[q·(ρ−ρ0)+w1|z0|+w2z].

(2.131)

where we have introduced also the unit vector

ê+
2p = 1

k2

(
w2qx

q
,
w2qy

q
,−q

)

which is perpendicular to k+
2 = {

qx , qy, w2
}
with w2(q) =

√
k2
2 − q2, and Rp,s and

Tp,s are Fresnel’s q-dependent reflection and transmission coefficients for plane p-
and s-waves, respectively. Here, Eq. (2.130) is the reflected field (z < 0), and (2.131)
is the transmitted field (z > 0). The term eiw1|z0| in both the reflected and transmitted
fields takes into account the additional phase shift due to the plane wave propagation
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form the dipole’s position to the interface. Two important points can be read off from
Eq.2.131

1. The magnitude of the transmitted and reflected electric field depends on the ori-
entation of the dipole vector pwith respect to the plane of incidence. This is taken
care of by the scalar products ê±

j p · p and ês · p.
2. The magnitudes of these electric fields clearly depend on the reflection and trans-

mission coefficients Tp,s and Rp,s , which are themselves functions of the angle
of incidence and thus q of the plane waves with respect to the interface.

Let us now examine two important particular cases. In the first case, when n1 < n2

i.e., the dipole is in an optically rarer medium, such as water, on top of an optically
denser medium, such as glass. In this case, all propagating waves in medium 1 are

also propagating in medium 2 (since w2 =
√

k2
2 − k2

1 + w2
1 which is always real for

w1 � k1 and k2 > k1). However, the amplitude of vector q can be larger than k1 (it
actually can go up to infinity). Thus, for the range of q-values with k1 < q ≤ k2, one
has non-propagating and exponentially decaying plane waves in medium 1 (iw1|z0|
is real and negative), which, however, become propagating inmedium 2, contributing
to the far field radiation in the lower half-space. This is similar to frustrated internal
reflection which we studied before. We had seen that this process results in an energy
reduction of the reflected plane (as compared to TIR) and a partial energy transfer
to the denser medium beneath the thin layer. In the situation here, one can visualize
this as a dipole losing more energy per time than one within a homogeneous medium
1 without any interface (energy tunneling into denser medium). This leads to an
increase in total radiated power S and, as a resulting, to an decrease of the excited state
lifetime τ f . Finally, for values of q larger than k2, all plane waves are exponentially
decaying, and they do not contribute to any far-field energy propagation. The second
case is the opposite, when the dipole is located in the optically denser medium
(n1 > n2). In this case, there exist propagating plane waves in medium 1 which
cannot propagate in medium 2 (for k2 < q ≤ k1). For these values of q, the absolute
values of the reflection coefficients Rp and Rs are equal to one, and depending upon
the distance of the emitter from the surface, constructive or destructive interference
with the directly emitted plane wave along k−

1 takes place in medium 1. In medium
2, these plane waves are evanescent and exponentially decay with distance z.

2.4.2.1 Angular Distribution of Radiation of a Dipole Near a Dielectric
Interface

In the upper half-space (medium 1), the angular distribution of radiation can be
calculated from the time-averaged Poynting vector (S(r) ∝ |E|2) using the dipole’s
direct field together with the reflected field along direction k−

1 . Using the electric
fields from Eqs. (2.129) and (2.130), we find that the energy flux radiated into a
solid angle element d�2 = (q/w1k1)dqdψ into the upper half-space (z < 0) along
direction (q, w1) is proportional to
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d2Su

d�2 ∝ k40 p2

4π2

∣∣
[
ê−1p(ê−1p · p) + ês(ês · p)

]
+

[
ê−1p Rp(ê+1p · p) + ês Rs(ês · p)

]
e2iw1|z0|∣∣2

(2.132)

The exponential term at the end of the reflected term represents the additional phase
shift due to the path difference between the plane directly emitted by the dipole
towards k−

1 , and the plane wave which first propagates towards the interface along
k+
1 , and which is then reflected by it towards k

−
1 . Since p and s-waves are orthogonal

to each other, the modulus can be split into two terms each containing one of these
components separately

d2Su

d�2
∝ k4

0 p2

4π2

[∣∣[ê−
1p + Rp ê

+
1pe2iw1|z0|] · p∣∣2 + ∣∣[1 + Rse2iw1|z0|] (ês · p)

∣∣2
]

(2.133)

Similarly, the energy flux density radiated into a solid angle element d�2 =
(q/w2k2)dqdψ into the lower half-space (z > 0) along direction (q, w2) is given
by

d2Sl

d�2
∝ k4

0 p2

4π2

∣∣∣∣
w2

w1

∣∣∣∣

2 [∣∣Tp ê
+
1p · p∣∣2 + ∣∣Ts ês · p∣∣2

]
e−2Im(w1)|z0| (2.134)

The proportionality factors for each case can be obtained by considering the limiting
casewhen the refractive indices of bothmedia are identical, thus setting Rp = Rs ≡ 0
and Tp = Ts ≡ 1. By comparing the result with the angular distribution of radiation
for a dipole in a homogenous medium with refractive index n = n1 = n2, i.e. with
(cnk4

0/8π)
[

p2 − (r̂ · p)2
]
, one finds the proportionality factors asπ cn/2. This leads

to the final expressions

d2Su

d�2
= cn1k4

0 p2

8π

[∣∣[ê−
1p + Rp ê

+
1pe2iw1|z0|] · p∣∣2 + ∣∣[1 + Rse2iw1|z0|] (ês · p)

∣∣2
]

(2.135)

and

d2Sl

d�2
= cn2k4

0 p2

8π

∣∣∣∣
w2

w1

∣∣∣∣

2 [∣∣Tp ê
+
1p · p∣∣2 + ∣∣Ts ês · p∣∣2

]
e−2Im(w1)|z0| (2.136)

Figure2.19 shows the dramatic change of the angular distribution of radiation for
an emitting dipole on an air/glass interface as compared to the toroidal distribution
in a homogeneous medium. Note that the emission of a vertical dipole is symmetric
around the vertical axis, but not for a horizontal dipole. The enhanced radiation
into the glass medium is one of the key reasons why inverted microscopes that look
from the glass side should be preferred for single-molecule detection and sensitive
bioimaging. The angular radiation distribution of a dipole on the interface for various
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Fig. 2.19 Angular distribution of radiation of a vertical (left) and a parallel (right) dipole on top
of an air/glass interface

values of the refractive index of the lower half space is shown in Fig. 2.20. For
comparison, we also show the emission when there is no interface, i.e. n1 = n2. A
can be seen, the energy emitted into the optically denser medium is much higher for a
vertical dipole than for a horizontal dipole.Moreover, most of the energy is emitted at
high emission angles, which requires a high Numerical Aperture (N.A.) objective to
collect this emission efficiently. The reason is that plane wave components which are
evanescent in the dipole’s medium can tunnel into the optically denser medium of the
lower half space where they become propagating, carrying away energy. Figure2.21
below shows the distribution for various values of dipole orientation angles towards
the interface.

2.4.2.2 Radiation Power of a Dipole on Top of a Dielectric Interface

The total power radiated by the dipole is given by the integral of angular distribution
of radiation over all directions.

S =
ˆ π /2

0
dθ1 sin θ1

ˆ 2π

0
dψ

d2Su

d�2
+

ˆ π /2

0
dθ2 sin θ2

ˆ 2π

0
dψ

d2Sl

d�2
(2.137)

where θ1 and θ2 are the angles of wave vectors in media 1 and 2 (k−
1 and k+

2 ),
respectively, andwhich are connected to the value of q via sin θi = q/ki , for i = 1, 2.
Thus, Eq. 2.137 takes the form

S =
ˆ k1

0
dq

q

k1w1

ˆ 2π

0
dψ

d2Su

d�2
+

ˆ k2

0
dq

q

k2w2

ˆ 2π

0
dψ

d2Sl

d�2
(2.138)

The upper limits for the integrations over q in the equation above are k1 and k2 for
the upper and lower half-space, respectively. They represent the maximum possible
projections of the wave vecotr into the plane of the interface for propagating waves
in the respective half-space. The total power of emission S obtained is inversely
proportional to the excited state lifetime of the dipole. In other words, the ratio of
S with the total power of emission of a free dipole in a homogeneous medium of
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refractive index n1 (S0), where S0 is the total power of a dipole in vacuum (n1 = 1),
gives us the inverse of the ratio of the excited state lifetimes in both cases.

It can be shown that the total emission power of a dipole with arbitrary orientation
α towards the vertical axis is given by the sum of the emission of a parallel and a
vertical dipole with dipole moments which are its projections on the horizontal and
vertical axis, respectively

S(α, z0) = Stot ⊥(z0) cos
2 α + Stot ‖(z0) sin2 α (2.139)

When the dipole is situated in the optically rarer medium close to the interface,
|z0| < λ, non-propagating near-fieldmodes of the dipole can tunnel into the optically
denser medium where they become propagating, which leads to an increase of the
total radiation power. This can be observed as a faster decay of the excited state of a
fluorescing molecule. An inverse effect takes place when the molecule is situated in
the optically denser medium. Figure2.22 shows the total power radiated by a dipole
at different positions above a glass/water interface for both, horizontal and vertical
orientations. Let us notice that the radiation power shows a periodic behavior with
distance from the interface, with a period of λ/π n1. This is also shown in Fig. 2.23.

Fig. 2.20 Angular distribution of radiation power from a vertical and a paralle dipole located at
the interface separating two dielectric media of refractive indices as shown above and below the
dipole’s position
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Fig. 2.21 Angular distribution of radiation of dipoleswith various orientations on top of an air/glass
interface. α denotes the angle between the dipole and the vertical direction

Fig. 2.22 Figure showing the distribution of power as a function of distance from a water/glass
interface for a vertical and parallel dipole present inwater. For a dipole situated at the interface, about
70% of total radiation power is transmitted into the glass half-space which shows the prominence
of the effective near-field field coupling with the interface
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Fig. 2.23 The top figure shows the total energy radiated as a function of dipole’s distance from the
interface for both, vertical and parallel dipoles. The energy is normalized against the total radiation
power of a dipole in an unbounded water medium. The oscillation amplitude of the curves goes
to zero and the power converges to 1 (or 1.5/1.33) when the distance is on the order of a few
wavelengths. The bottom figure shows the relative excited state lifetime as a function of distance
from the interface normalized to the values in water

2.4.3 Dipole on a Metal Surface

Let us now investigate the behavior of a dipole in the vicinity of a metal surface. The
properties of a dipole change dramatically in the vicinity of a metal surface. Due to
the complex dielectric constant of a metal, a part of the electromagnetic radiation
that is incident on them is absorbed. This absorption can be seen as a transfer of
energy from the radiation to the oscillating plasmons on the surface. The situation is
more complex when an oscillating dipole is present close to a metal. Not only does
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a part of its radiated energy gets absorbed into the metal, but a near-field coupling
between the dipole and the surface plasmons takes place. This changes the rate of
energy emitted by the dipole dramatically. This is similar to what was presented in
Sect. 2.4.2 for a dipole that is situated close to a dielectric interface in an optically
rarer medium. There we saw that a few non-propagating modes of a dipole tunnel
through and propagate in the optically densermedium. In case ofmetals, however, the
energy that is transferred to the surface plasmons is attenuated along the z-direction.
Therefore, the energy that is absorbed from the dipole’s near-field is lost as heat in
the metal internally and is not available for optical detection.

Several experimental studies have measured the effect of a metal surface on the
fluorescence lifetime. During the early 70s, Drexhage and coworkers showed the
influence of a reflecting mirror on a monolayer of phosphorescent europium chelate
complexes experimentally, and developed a model to explain the variations in flu-
orescence lifetimes based on the interference of a dipole’s field with itself [27].
This model could explain well the oscillatory behavior of the radiation rates at large
distances from the metal surface, but failed to account for the experimental results
at short distances (z0 < λ) where efficient nonradiative energy transfer from the
excited molecule to the metal surface takes place. At short distances, the europium
complexes were quenched since the transferred energy was lost to the metal com-
pletely. The situation becomes slightly different for a thinmetal film. The reduction of
the thickness to a few nanometers leads to two things: 1) The coupling of the dipole’s
field with the surface plasmons present on the bottom side of the metal leading to
a further modification of the distance-dependent energy loss. 2) Some part of the
energy transferred to the metal can now propagate into the lower dielectric medium.
This was demonstrated experimentally by Amos et al. by varying the thickness of a
thin silver film on top of a glass coverslide [28].

A more appropriate theoretical treatment for studying the behavior of a dipole in
the vicinity of ametal surfacewas performed byKuhn in hismodelwhere the dipole is
considered as a damped oscillator and involves the calculation of the reflected field
at the dipole’s position [29]. This way of calculating the total emission rates was
already introduced in Sect. 2.4.1.1 using Poynting’s theorem. Later, Chance, Prock
and Silbey worked out the energy-flux method, which we will introduce briefly as
well. With this model (CPS model) one can separate the total flux and radiation rates
into the upper and lower half-spaces, useful for many practical purposes, such as
calculating the amount of radiation from a dipole that can be detected through a thin
film, etc [23]. The treatment is similar to that shown in the previous section where a
dipole’s reflected and transmitted fields are calculated when it is situated close to an
interface and the total power radiated is calculated by integrating the Poynting vector
for all the propagating waves in both half-spaces. However, here, in order to take
the near-field coupling of a dipole with the metal surface into account, the integrals
are calculated over all possible wave vectors, where q goes from 0 to ∞. We start
our discussion by taking the transmitted and reflected fields of an oscillating dipole
placed on top of an interface from our previous Sect. 2.4.2 using Fresnel’s equations
presented in the previous section.
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ET (r) = ik2
0

2π

¨
dq
w1

[
ê+
2pTp(ê

+
1p · p) + ês Ts(ês · p)

]
ei[q·(ρ−ρ0)+w1|z0|+w2z],

ER(r) = ik2
0

2π

¨
dq
w1

[
ê−
1p Rp(ê

+
1p · p) + ês Rs(ês · p)

]
ei[q·(ρ−ρ0)+w1|z0|−w1z].

Here the reflection and transmission coefficients are complex numbers. The field in
the upper half-space (z < z0) can be written as a superposition of the dipole’s field
with its reflection from the interface

E↑ = ik2
0

2π

¨
dq
w1

[
ê−
1p(ê

+
1p · p)

(
e−iw1(z−z0) + Rpe−iw1(z0+z)

)

+ ês(ês · p)
(
e−iw1(z−z0) + Rse−iw1(z0+z)

) ]
eiq·(ρ−ρ0),

(2.140)

and the field in the bottom half-space above the interface (0 > z > z0) is given by

E↓ = ik2
0

2π

¨
dq
w1

[
(ê+

1p · p)
(
ê+
1pe−iw1(z0−z) + ê−

1p Rpe−iw1(z0+z)
)

+ ês(ês · p)
(
e−iw1(z0−z) + Rse−iw1(z0+z)

) ]
eiq·(ρ−ρ0),

(2.141)

The corresponding magnetic fields are obtained by performing the curl operation on
the above equations followed by division by k0

B↑ = ik2
0n1

2π

¨
dq
w1

[
ês(ê

+
1p · p)

(
e−iw1(z−z0) + Rpe−iw1(z0+z)

)

− ê−
1p(ês · p)

(
e−iw1(z−z0) + Rse−iw1(z0+z)

) ]
eiq·(ρ−ρ0),

(2.142)

B↓ = ik2
0n1

2π

¨
dq
w1

[
ês(ê

+
1p · p)

(
e−iw1(z0−z) + Rpe−iw1(z0+z)

) ]
eiq·(ρ−ρ0)

− (ês · p)
(
ê+
1pe−iw1(z0−z) + ê−

1p Rse−iw1(z0+z)
)
,

(2.143)

Using these equations, one can calculate the power radiated along any direction
(ρ, z − z0). Further, energy flux through any plane can be calculated by taking the
dot product of the Poynting vector with the normal to this plane and integrating over
the whole plane. In this way, the total flux through a plane above the dipole’s position
z < z0 and below 0 ≥ z > z0 can be calculated using the above four equations.
Let us find out the total energy emitted into the lower half-space at the interface
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(z = 0). Using equations (2.141) and (2.143), one can write the Poynting vector
S↓ = c/8πRe{E↓ × B∗

↓}

S↓(ρ, z = 0) = ck4
0

32π3
Re

{¨
dq
w1

¨
dq′

w
′∗
1 k1

ei(q−q′)·(ρ−ρ0)

[ (
k̂1

+ + Rpk̂1
−)

e−iw1z0(e−iw′
1z0)∗(1 + Rp)

∗(ê+
1p · p)(ê+′

1p · p)∗

+
(
k̂1

+ + Rs k̂1
−)∗

e−iw1z0(e−iw′
1z0)∗(1 + Rs)(ês · p)(ê′

s · p)∗
]}

(2.144)

The above equation represents the energy flux at a point on the surface (ρ, z = 0).

By taking the projection of this vector along ẑ, using the relations ẑ · k̂±
1 = ±w1/k1,

and integrating over d2ρ, we get the total radiation power through the interface
S↓ = ´

d2ρ (S↓ · ẑ). This integration can be simplified by using the identity of
Dirac’s well-known delta-function,

ˆ
d2ρe[iρ·(q−q′)] = 4π2

δ
2(q − q′),

since the terms inside the square bracket in equation (2.144) do not depend on ρ.
This reduces equation (2.144) to

S↓ = ck4
0

8π
Re

{¨
dq

|w1|2
qn∗

1

k1

[
w1(1 − Rp)(1 + R∗

p)
∣∣ê+

1p · p∣∣2

+ w∗
1(1 + Rs)(1 − R∗

s )
∣∣ês · p∣∣2

]
e2Im(w1)z0

}
(2.145)

Now, this equation represents the total energy flux at the interface and it contains the
energy that is radiated from the dipole towards the interface together with the amount
of energy reflected back. If a calculation was performed similarly at a plane above
the dipole’s position to give S↑, it would contain the dipole’s radiation into the upper
half space, together with the radiation reflected back as well. The total emission rate
S can be calculated using equation (2.123) with the electric field at the position of
the dipole calculated using either of the two equations (2.141) or (2.140) [30, 31].

Let us now consider closely the case of a vertical dipole, p = pẑ. The integration
over q can be carried out in spherical coordinates

S⊥ ↓ = ck4
0 p2

4
Re

{ ˆ
dq

|k1w1|2
q3n∗

1w1

k1
(1 − Rp)(1 + R∗

p)e
2Im(w1)z0

}
(2.146)

Using (2.140) and after some algebraic manipulations, the total radiation power S⊥
is obtained as
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S⊥ = ck4
0 p2

2
Re

{ˆ
dq

|k1w1|2
q3n∗

1w1

k1
(1 + Rpe−2iw1z0)

}
(2.147)

Similarly, for a parallel dipole, one has

S‖ ↓ = ck4
0 p2

8
Re

{ ˆ
dq

|w1|2
qn∗

1

k1
[∣∣w2

1
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k2
1

w1(1 − Rp)(1 + R∗
p) + w∗

1(1 + Rs)(1 − R∗
s )

]
e2Im(w1)z0

}

(2.148)

and the total radiation power,

S‖ = ck4
0 p2

4
Re

{ ˆ
dq

|w1|2
qn∗

1w1

k1

[∣∣w2
1
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k2
1

(1 + Rpe−2iw1z0) + (1 + Rse−2iw1z0)

]}

(2.149)

All the integrals above were performed for all possible q (0 to ∞) values together
with positive imaginary solutions of w1(q) only. This gives the total power emitted
by the dipole into both the half-spaces S↑ and S↓. In order to calculate the rate of
energy detectable in both the half-spaces, one limits the upper-limit of the integrals
to propagating wave vectors only. An important point to note here is that for the
integrals (2.146) and (2.148) when q < k1, Im(w1) = 0, and therefore the integrals
do not depend on the dipole’s position. These then represent the “trivial transfer” of
radiation power to the metal surface from the far-field of the dipole [23]. In other
words, this shows the fraction of energy that is absorbed by the metal.

In order to complete the discussion here and to make use of what we just derived,
we calculate the total power that is detectable in both half-spaces for the two cases
of dipole orientations for a thin metal film on top of a glass coverslip. We do this
by calculating the ratio of the net propagating part of the radiation power to the
total power in both half-spaces. The above equations are true for such a stratified
conducting/dielectric layer system, as long as one uses the effective reflection coef-
ficients [24]. For a thin metal film sandwiched between glass and air, one has:

Rp,s = r12p,s + r23p,s exp(2iw2h)

1 + r12p,s r23p,sexp(2iw2h)
(2.150)

where the subscripts refer to p- and s-polarization, r12p,s and r23p,s are the Fresnel
reflection coefficients for an air-to-metal and metal-to-glass interface, and w2 =√

(n2
2 − 1)k2

0 + w2
1, where n2 is the complex refractive index of metal.

Figure2.24 shows the energy emitted that is detectable as a function of height. The
quantum yield for the dipoles was assumed to be one. Note that at distances z0 > λ,
the total radiated energy into both half-spaces approach constant values that represent
the net reflectance and transmittance of the metal film. Two important things should
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Fig. 2.24 N↑, N↓ represent the detectable energy calculated for both the upper and lower half-
spaces, respectively. The top figure shows the detectable radiation of a dipole (� = 1) into the upper
and lower half-spaces for both orientations as a function of distance d (d = z0/ λ, λ = 690 nm).
The thin gold film of 10 nm is enough to quench the dipoles. This can be seen in the plot where
the radiation in the upper and lower half-spaces approach zero when the dipole is placed at very
small distances. A part of the energy that is transferred to the surface plasmons couples out at the
gold/glass interface which propagates into the lower half-space. The bottom figure shows the ratio
of the detectable emission power in the lower half-space versus the upper half-space for both the
orientations as a function of distance from the metal surface. This shows that when a dipole is close
to the surface of a thin film, the chance to detect it optically is higher through the glass beneath
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be noted from this figure. First, the thin gold film of thickness 10 nm is enough to
quench the dipoles in its vicinity. In other words, the plasmons excited due to the
transfer of energy from the dipole radiate out in the bottom interface between gold
and glass medium. In other words, a part of the energy transferred to the plasmons
from the oscillating dipole close to it is transferred further into the glass medium
where it can propagate again. This energy now propagates in the form of plane waves
and can be detected by our optical system with a high collection efficiency objective.
The possibility to detect single molecules on top of a thin metal film, with some
spacer in between, was first shown by Stefani et al. [32].

Dividing equation (2.147) by the total radiation power of a free dipole in the same
medium (n1S0 = cn1k4

0 p2/3), we get rate associated with the total photon flux from
a dipole close to a metal surface

κ⊥ = κ0

[
1 − 3

2
Re

{ˆ ∞

0

du

w1
u3Rpe−2iw1z0

}]
, (2.151)

where we used u = q/k1 in the above equation, and κ0 is the radiative rate of a
free dipole (see equation (2.126)). On similar lines, the total photon flux of a parallel
dipole can be obtained

κ‖ = κ0

[
1 + 3

4
Re

{ˆ ∞

0

du

w1
u

[
Rs + (1 − u2)Rp

]
e−2iw1z0

}]
. (2.152)

If the quantum yield φ of the free dipole is not unity, then the total rate of photons for
a vertical dipole can be separated into the sum of a radiative (κr ⊥) and a non-radiative
decay rate (κnr ⊥) as

κr ⊥ = κ0

[
� − 3

2
�Re

{ˆ 1

0

du

w1
u3

(
Rp

)
e−2iw1z0

}]
(2.153)

and

κnr ⊥ = κ0

[
(1 − �) − 3

2
�Re

{ˆ ∞

1

du

w1
u3 (

Rp
)

e−2iw1z0

}]
. (2.154)

The above equations are trivial to understand. w1 is real only when u varies from
0 → 1. Since the radiative rate is associatedwith propagating planewaves originating
from the dipole, the integral takes into account only these values of u. The factor
κ0(1 − �) is the intrinsic non-radiative damping constant of the oscillator and it
represents the fraction of energy that is not available for any energy transfer or
emission processes. The effect of the metal or the local environment on the dipole
is realized on the radiative part of the energy which is given by κ0�. Due to the
presence of a metal surface here, a part of this radiative energy appears as non-
radiative energy which is accounted for by the integral term in expression (2.154).
Therefore, this integral represents the metal-induced energy transfer.
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κMIET⊥ = 3

2
κ0�Re

{ˆ ∞

1
Rpe−2iw1|z0|u3 du

w1

}
(2.155)

At distances on the order of a wavelength and closer to the metal surface, both the
radiative as well as the non-radiative rates are modified as according to equations
(2.153) and (2.154), respectively. One more important thing to note here is that the
extent of energy transfer to the metal is directly related to the quantum yield� of the
dye molecules. Therefore, one is bound to know the exact quantum yield in order to
estimate the total radiative rate and fluorescence lifetime as a function of distance.
Figure2.25 shows the variation of lifetimes with distance for the two orientations
of a dipole with various quantum yields. An important observation here is that at
any height |z0| above the surface, the energy transfer scales proportionally with the
quantum yield of the dye, as represented by Eq. (2.155). Therefore, if the free space
lifetimes of two fluorescent molecules, with different quantum yields, are identical,
then at a given distance from a metal surface, lifetime of the molecule with higher
quantum yield is shorter.

For a dipole oriented at an angle α with respect to the normal of the surface,
one can derive the total emission power S(α, z0), using the reflected electric field
from equation (2.130), together with its own field, and equation (2.123) (Poynting’s
Theorem) in terms of the total emission power of a vertical and parallel dipole. If the
quantum yield of the dipole is �, then the rate of excited state decay can be written
by dividing the total emission power by n1S0 (radiation power of a free dipole in the
same medium)

κ(α, z0) = κ0

[
(1 − �) + �

S(α, z0)

n1S0

]
= 1

τ f (α, z0)
(2.156)

Fig. 2.25 The Left figure shows the relative lifetime variation with the distance from a 10 nm gold
film for a vertical dipole with various quantum yield. The right figure shows the same for a parallel
dipole
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Fig. 2.26 MIET calibration curves of Rhodamine 6G in water on top of a thin gold film at various
polar angles. The calculations were done for a thin gold film of thickness h = 10 nm, with water as
a medium above at a wavelength λem = 525 nm. The free space parameters for the dye are taken
from the reference [19]

Fig. 2.26 shows the MIET calibration curves of Rhodamine 6G (τ0 = 1/κ0 = 4.1 ns
and� = 0.95, see reference [19]) for five different dipole orientationswithwater as a
medium above a thin gold film (h=10 nm) at an emission wavelength λem = 525 nm.

Regardless of its quantum yield and orientation α, the excited state lifetime of a
single molecule shows amonotonic relationship with distance from themetal surface
in the near-field limit, and therefore, can be used to locate the emitter from the surface.
This is much similar to FRET where the energy is transferred non-radiatively to
another dipole. However, the distance to lifetime relationship in the case of FRET
shows an inverse sixth power relationship (�τ/τ0 ∝ d−6), whereas in the case of an
infinite plane of a metal surface, it is roughly proportional to d−3 to d−4 [23].

This concludes the theory to explain the concept of metal-induced energy transfer
completely. The emission properties of an electric dipole emitter in the presence of
a dielectric or metallic interface are calculated by expressing its electric field as a
superposition of plane waves, and thereafter calculating the reflected and transmitted
fields by using Fresnel’s equations. The modified spontaneous emission rate is then
obtained directly by calculating the reflected field at its position and applying Poynt-
ing’s theorem (2.122). Energy flux calculations by estimating the Poynting vector
allows one to separate the total energy radiated into both half-spaces, and further, to
picture the angular distribution of emission. This includes the involvement of vari-
ous processes which have not been precisely named in this chapter such as Surface
Plasmon Coupled Emission (SPCE), Surface Plasmon Resonance (SPR), Lossy Sur-
face Waves (LSW), Radiating Plasmons (RP), etc [33–35]. Introducing these terms
and terminology is confusing and is not required in order to explain the necessary
emission properties of a single molecule near a metal surface or a thin metal film.
The theory above is in fact completely identical to the theoretical work of Purcell
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who derived the spontaneous emission probabilities of nuclear transitions in metallic
resonators. The idea is based on the enhancement of the local density of final states
in, for example, a cavity or near a conducting surface.
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Chapter 3
Single-Molecule Metal-Induced Energy
Transfer (smMIET)

Abstract In this chapter, we present a new concept for measuring distances of
single molecules from a surface with nanometer accuracy using the energy transfer
from the excited molecule to surface plasmons of a metal film. We measure the
fluorescence lifetime of individual dye molecules deposited on a dielectric spacer.
By using our theoretical model, we convert the lifetime values into the axial distance
of individual molecules. Similar to Förster Resonance Energy Transfer (FRET), this
allows emitters to be localized with nanometer accuracy, but in contrast to FRET the
distance range at which efficient energy transfer takes place is an order of magnitude
larger. Our technique can be potentially used as a tool for measuring intramolecular
distances of biomolecules and complexes.

3.1 Experimental Setups

3.1.1 MicroTime 200 Setup

We used the commercial confocal system Microtime 200 (PicoQuant) for scanning
our samples and lifetime imaging. Figure3.1 depicts a schematic of the setup, which
contains four basic parts:

1. The microscope: A modified Olympus IX-71 microscope (Olympus Deutsch-
land) with an accessible standard side port on the right side was used for the
experiments. The samples were scanned at a speed of 12µm/s typically by using
a three-axis piezo stage (P-562.3CD, Physik Instrumente) that was driven with a
digital piezo controller (E-710.3CD Physik Instrumente).

2. The excitation system: A pulsed diode laser (λ = 640 nm, LDH-D-C-640, Pico-
Quant) with a pulse width of 100 ps full-width-at-half maximum was operated at
a pulsing frequency of 40MHz by using a multichannel picosecond laser driver

Parts of this chapter and some figures have been published in the journal article:
Karedla, N.; Chizhik, A.I.; Gregor, I.; Chizhik, A.M.; Schulz, O.; Enderlein, J. “Single-
Molecule Metal Induced Energy Transfer (smMIET): Resolving Nanometer Distances at Single
Molecule Level” ChemPhysChem 15 705-11 (2014)
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Fig. 3.1 A schematic diagram showing the main parts of the Microtime 200 setup. The dashed
lines show the synchronization of the various hardware components in the system

(PDL 828 “Sepia II”, PicoQuant). A clean-up filter (Z640/10X, Chroma Tech-
nology) was used to block undesired wavelengths from the laser. The laser beam
was then coupled to a polarization-maintaining single-mode optical fiber (PMC-
400-4.2-NA010-3-APC- 250 V, Schäfter und Kirchhoff).

3. The main optical unit: The excitation light from the fiber output was collimated
into a beam of 9mm diameter by coupling it to an infinity-corrected 4X objective
(UPLSAPO 4X, Olympus). The excitation beam was then reflected by using a
dichroic mirror (FITC/CY5 (51008bs), Chroma Technology) to guide it into the
side port of the microscope. The power used was in the range of 10–25kWcm−2.
A high numerical aperture objective was used to excite the samples (UAPON
100X OTIRF, 1.49 N.A., Olympus) and to collect the fluorescence emission. The
emission light was then passed through the dichroic mirror and focused onto a
50µm pinhole for confocal imaging. After the pinhole it was refocused by using
a pair of achromatic lens doublets onto the active area (∼200µm) of a single-
photon counting module (SPCM AQR-13, Perkin-Elmer, (∼70% quantum yield
of detection atλ = 670 nm). A band-pass filter (BrightLineHC692/40, Semrock)
was used in the detection pathway to block the back-scattered laser light and also



3.1 Experimental Setups 77

a major part of gold photoluminescence. The dark count rate of the detector was
less than 150 counts per second.

4. Data acquisition and processing: The Transistor-Transistor-Logic (TTL) pulses
from the SPCMwere recorded with a 2 ps time resolution by using amultichannel
picosecond event timer and Time Correlated Single-Photon Counting (TCSPC)
module (HydraHarp 400, PicoQuant) in theTime-TaggedTime-Resolved (TTTR)
acquisitionmode [1]. The periodic sync signal for the time tagswas obtained from
the Sepia II driver and the markers from the piezo controller representing the start
and endof a scan linewere recorded as ‘virtual photons’. The collectedphotondata
was processed using the commercial software SymPhoTime v.5.2 (PicoQuant)
giving the intensity and lifetime images. Pixels corresponding to singlemolecules
were identified from this intensity image by using a custom Matlab routine that
will be described below.Aweighted average of pixel lifetime valueswith intensity
values as weights was calculated separately for each individual molecule. Finally,
a histogram of average lifetimes of all the identified single molecules in the image
was plotted.

3.1.2 Wide-Field Setup for Defocused Imaging

AnEMCCD (ElectronMultiplying Charge CoupledDevice) camera (iXon+DU-885
K, Andor Technology, 1004 × 1002 pixels and 8µm × 8µm pixel size) was cou-
pled to the trinocular observation port of an Olympus IX-71 microscope (Olympus
Deutschland). For excitation, a λ = 647 nm diode laser (PhoxX 647, 140mW, Omi-
cron Laserage, Germany) was modulated by using the “fire” output of the camera.
The linearly polarized laser beam was focused on the back aperture of the objec-
tive (UAPON 100XOTIRF, 1.49 N.A., Olympus) that was shifted across the back
aperture by using a movable mirror to illuminate the sample in Total Internal Reflec-
tion (TIR) mode with an average illumination power of 0.2 kWcm−2. The emission
light was collected by using the same objective and passed through a dichroic mirror
(Di01- R405/488/561/635-25 X 36, Semrock) and further filtered using a quad-band
pass filter (FF01-446/523/600/677, Semrock) before it was focused onto the camera
sensor.

3.2 Proof of Principle Experiments

3.2.1 Substrate Preparation

Glass coveslips (thickness 150µm, refractive index 1.52) were cleaned piranha solu-
tion (3:1 v/v ratio of concentratedH2SO4 and 30%w/vH2O2) for about 15min. These
were later washed with water and used as substrates for vapor deposition of 2 nm
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titanium, 10 nm gold, and SiO2 spacer of required thickness (20, 30, 40 and 50nm
in the order mentioned). The process was carried out under high-vacuum conditions
(≈ 10−6 mbar) by using an electron beam source (Univex 350, Leybold). The slow-
est rate of deposition was maintained (1Å s−1) to ensure maximum smoothness on
the surface. The thickness of the layers was monitored by using an oscillating quartz
unit during deposition and later verified by using atomic force microscopy. Atto 655
(Atto Tech GmbH) was diluted to 1 nM inMillipore water (18.2M�cm−1 at 285K).
An aliquot of this solution (10mL) was spin-coated onto the substrates prepared at
8000 rpm for 40 s. This dye was used mainly due its reported good photostability
in air and long lifetime of around 3 ns [2]. For defocused imaging, substrates were
prepared by evaporating 20 nm SiO2 onto cleaned glass coverslips without any gold
layer. Atto 655 (50 pM) was then spin-coated onto these substrates.

3.2.2 Results

The substrates were scanned on theMicrotime 200 confocal microscope as described
above in the experimental section. The area scans with focused linearly polarized
gaussian laser show gaussian intensity patterns at the positions of the single mole-
cules. These patterns were identified with a custom written Matlab algorithm for
least square minimization pattern matching [3] using a 2D-gaussian mask. Figure3.2
shows one such scan image which displays the single molecule intensity patterns
identified by the program. The identified positions and pixels were then used on the

Fig. 3.2 A scan image showing intensity patterns of single molecules spin coated on a glass
substrate. The gaussian patterns identified by the pattern matching program are marked as cyan
circles
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Fig. 3.3 Left Intensity image obtained from experiment. Right Back-calculated image displaying
all single molecules identified from the intensity image. The image size is 30 × 30µm2 [This image
has been published in the article [4]]

average lifetime image obtained from the SymPhoTime software in order to calculate
the fluorescence decay times for each individual molecule.

Measurementswere performedon singlemolecules deposited on anSiO2 spacer of
various thickness above a thinmetal film (2 nm titanium, 10 nm gold) on a glass cover
slide. Scans of size 30µm × 30µmwere acquiredwith a pixel size of 67 nm × 67 nm
and a pixel pixel dwell time of 5ms. Figure3.3 shows one such intensity image on a
SiO2 spacer of thickness 30 nm. The background that can be seen on the image is due
to the photoluminescence of gold.However, the average arrival timeof the photolumi-
nescence photons from a smooth gold surface is less than 2 ps, which does not affect
the result of the measurement [5] when the fluorescence lifetime image is calculated
by taking the arrival times of photons after a time gate at 0.5 ns after the Instrument
Response Function (IRF) peak. The identified molecules without the background
are displayed in Fig. 3.3 on the right panel. We repeated the measurements for four
different SiO2 spacer thicknesses, and the recorded average fluorescence lifetime
images are shown in Fig. 3.4, in which we have already used the identified molecule
positions to suppress any background that does not belong to individual molecule’s
fluorescence.Next, for each spacer thickness, we calculated the distribution of single-
molecule fluorescence lifetimeswhich is shown in Fig. 3.5. The obtained lifetime val-
ues are (0.50 ± 0.06) ns, (0.81 ± 0.07) ns, (1.19 ± 0.08) ns, (1.50 ± 0.08) ns for
20 nm, 30 nm, 40 nm, and 50 nm spacer thicknesses, respectively.

Now, in order to evaluate the obtained lifetime values, we compare these with
the theoretically estimated values using the CPS model (see Sect. 2.4.3). Emission
rates for a vertical and a parallel dipole S⊥(z) and S‖(z)) were calculated for heights
varying from 0 nm to 100 nm from the metal surface by using the bulk refractive
indices of gold and titanium at λ = 684 nm that are taken from the literature: nAu =
0.1706 + 3.7399i and nT i = 2.1648 + 3.2552i [6]. The value for the quantum yield



80 3 Single-Molecule Metal-Induced Energy Transfer (smMIET)

Fig. 3.4 Lifetime images for a 20nm, b 30nm, c 40nm, and d 50 nm SiO2 spacer thicknesses for
the identified single-molecule pixels. The color bar shows the color index for lifetime values in
nanoseconds. Each image is 30 × 30µm2. [This image has been published in the article [4]]

� of the used dye (Atto 655) was set to 0.3 as provided by the manufacturer.1

Using these calculated emission rates, the experimental lifetime values were fitted
to Eq. (2.156) with free-space lifetime τ0 and angle α (which indicates the ratio of
horizontal to vertical dipoles) as free fit parameters. Figure3.6 shows the fitted data
along with curves of the MIET calibration curves for a horizontal and a vertical
dipole. The shaded area in between these two curves indicates the possible lifetime
values for a dipoles with polar orientation α in between these two extremes. From
the fit we find that the observed lifetime-distance behavior is best described if almost
all molecules are oriented horizontally, which is expected for dye molecules that are
spin-coated from solution onto a flat surface [7].

In order to ascertain this, several defocused images of Atto 655 single molecules
were taken on samples prepared by spin-coatingAtto 655 on a thin SiO2 layer (20 nm)
evaporated directly on glass coverslips without any metal layer. All the images were
acquired with a total exposure time of about 10 s with TIR illumination. The focus

1http://www.atto-tec.com/.

http://www.atto-tec.com/
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Fig. 3.5 Lifetime distributions for the four samples with 20nm, 30nm, 40nm, and 50 nm SiO2
spacers between the metal film and the deposited molecules. [This image has been published in the
article [4]]

of the objective was shifted to ∼1µm above the substrate/air interface. The camera
was operated at a temperature of −80 ◦C, a preamp gain of 3.7, and an electron
multiplying gain of 5 to 10 depending on the brightness of the molecules. The left
panel of Fig. 3.7 shows an exemplary image with defocused patterns of around 20

Fig. 3.6 Fitting of experimental lifetime values by using Eq. (2.156). The unperturbed lifetime τ0
obtained as a fit parameter is 2.78 ns, which is in good agreement with the lifetime of Atto 655
measured on glass/air interface [2]. [This image has been published in the article [4]]
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Fig. 3.7 Left Measured defocused image of Atto 655 single molecules on a SiO2 layer (20 nm)
evaporated on a glass coverslip. The image (512 × 512) was obtained by moving the focus of the
objective 0.85µm above the substrate/air interface. Right The identified single-molecule patterns
from the measured image obtained by pattern matching after background subtraction. The color has
been inverted for better visibility

single molecules on a cropped CCD area of 512 × 512 pixels with an effective pixel
size of 80 nm.Model patterns basedon exactwavevector calculationswere calculated
for various orientations and defocusing values (See Patra et al. [3] or Sect. 4.3.1 for
theory). In order to estimate the correct value of the defocusing, we compared the
patterns obtained in the images with computed patterns for horizontal dipoles at
various values of defocusing. Because the horizontal dipole pattern at the SiO2/air
boundary is highly sensitive to the focus position, the correct value can be estimated
to within 0.1µm accuracy. For the image shown in Fig. 3.7 (left), the defocus value
was estimated to be δ(z) = +0.9µm.

Fig. 3.8 Calculated defocused patterns with effective pixel size 80 nm, defocus value 0.85µm
for polar angles α = 90◦, 85◦,…, 30◦ and 0◦ with respect to the vertical. These calculations were
performed at the emission maximum of Atto 655, λ = 680 nm
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Fig. 3.9 Histogram showing the single-molecule inclinations obtained by patternmatching analysis
for 25 images taken from different areas in the sample

Next, we calculated the model patterns of defocused dipoles oriented at 826 dif-
ferent orientations in space (data not shown here, see Fig. 4.28 for example). These
patterns were calculated by individually varying the azimuthal angle β (in-plane)
and the polar angle α (out-of-plane) by 5◦. The radius for computing the patterns
was chosen as 20 pixels and therefore each model pattern is of size 41 × 41 pixels.
For the sake of clarity we show the calculated patterns for various polar angles with
a step of 5◦ in Fig. 3.8. These model patterns were then used to match to the defo-
cused images obtained by using a custom Matlab algorithm using a least squares
minimization algorithm (see Patra et al. [3] or Sect. 4.1.4 for details.). With such
an analysis, the three-dimensional orientations of single molecules can be identified
with a resolution of 5◦ for both the angles. The right panel of Fig. 3.7 shows the
identified patterns of 18 single molecules. Similar pattern matching analysis was
carried out on 25 such defocused images, for the same defocusing value, and lastly, a
histogram of the inclinations for all the identified molecules was obtained, shown in
Fig. 3.9. The histogram shows that about 268 out of 283 total identified patterns have
inclinations >75◦. The fitting accuracy depends dramatically on the signal-to-noise
(S/N) ratio of the defocused patterns and a poor S/N can deteriorate the resolution
for determining the polar angles to as low as 20◦, which is the case for most of the
defocused patterns obtained in our images (see left panel in Fig. 3.7). Within these
limitations, the result obtained from the distribution of single-molecule inclinations
is in good agreement with the fitting result obtained above (Fig. 3.6) which estimates
the percentage of horizontal dipoles.

The values of the fit parameters for Eq. (2.156), τ0 and the ratio between horizontal
and vertical dipoles, depend on the quantum yield �, which we take as 0.3. A slight
reduction in the quantum yield, which can be the situation for single molecules at the
air/SiO2 interface, can shift the shaded area in Fig. 3.5 to higher lifetime values and
thereby changes the ratio of horizontal to vertical dipoles. For example, if the quantum
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yield was assumed to be 0.29, the ratio changes to 94:6, whereas the unperturbed
lifetime value τ0 rises to 2.85 ns.

3.2.3 Discussion and Outlook

The error of the observed single-molecule lifetime values is less than 0.1 ns, which
corresponds to an axial localization accuracy of less than 2 nm for horizontal dipoles.
Since the error of lifetime variation follows Poisson statistics, a reduction in the
spread of the lifetime distribution can be achieved by increasing the number of
collected photons per molecule, for example, by using suitable oxygen-scavenging
protocols to reduce the rate of photobleaching [8]. In our current experiments, we
detected on average 369, 767, 1002, and 1031 photons per individual molecule for
spacer thickness values of 20 nm, 30 nm, 40 nm, and 50 nm, respectively.

The physical basis behind smMIET is the energy transfer from the excited mole-
cule to surface plasmons in the metal and it is thus quite similar to FRET. Unlike
FRET where three relative orientation angles between donor emission and accep-
tor absorption dipoles are needed, which are inaccessible by using any independent
measurement, here we need the out-of-plane orientation α of the emitting molecule
with respect to the metal surface which can be obtained using themethods mentioned
above. Moreover, the distance range over which smMIET works is much larger than
FRET and as can be seen from Fig. 3.6, goes upto 100 nm. Therefore, in order to
find its application in structural biology, one would need both the lifetime and ori-
entation for nanometer-precise distance measurements. In our current measurement
scheme, the fundamental limitation is that we have no means of measuring the orien-
tation (polar angle) of the molecule simultaneously with the intensity and lifetime.
As can be seen from Fig. 3.6, the relation between distance and lifetime is strongly
orientation dependent. There are several options to achieve this, including defocused

Fig. 3.10 An illustration showing the application of smMIET for structural biology. The pro-
tein/macromolecule is labelled site-specifically with two labels much similar to FRET. Independent
lifetime and orientation measurements are perfomed to obtain the heights of the two labels on each
immobilized complex. Carrying out simple statistics, one can derive the distance between the two
sites
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imaging [3, 9] scanning with radially polarized light [10], or detecting separately
sub- and supercritical fluorescence emission [11]. However, all thesemethods require
significant extensions and/or modifications of a conventional confocal laser scanning
microscope, some of which we will investigate in the forthcoming chapter.

In combination with such orientation measurements, smMIET can determine dis-
tance values of single molecules from a surface with nanometer resolution. Already
with our nonoptimized (in terms of photobleaching) measurements we could esti-
mate the distance with accuracy higher than 2.5 nm. Although smMIET achieves
this resolution only along one single axis, this method will open new fascinating
possibilities for structural biology. For example, for determining the intramolecular
distance between two fluorescent labels in a macromolecule, as shown in Fig. 3.10,
one can envision using smMIET to measure the absolute height differences between
both labels for a large number of macromolecules immobilized on a surface. Next,
one could apply simple statistics to obtain the absolute distance between the labels.

In the forthcoming chapters wewill enlist a few existing techniques for measuring
the orientations of single molecules. The main focus will be to point out the most
feasible method for obtaining the orientations together with the lifetime information
in order to extend smMIET as a versatile tool for structural biology.
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Chapter 4
Single-Molecule Transition Dipole Imaging

Abstract An electronic transition between two molecular energy levels is a redis-
tribution of electron density over the molecule’s structure following the interaction
with the local electromagnetic field. Molecules that have a preferred direction for
such a redistribution show a classical dipole behavior and this direction defines the
excitation or emission transition dipole moment. Almost all organic dye molecules
behave as electric dipole oscillators. In this chapter, we introduce two well-known
methods, one for imaging the excitation transition probability, and the other for the
emission transition probability of singlSSe emitters. Both of these methods are used
for determining the complete three dimensional orientations of these two vectors
in space. We apply them for the study of the excitation and emission properties
of Carbon Nanodots (CNDs) that are novel fluorescent probes gaining popularity in
bioimaging.We show that theCNDs are single dipole emitters similar to organic dyes.
Thereafter, we present the first experimental method for determining the geometry
of the two transition dipoles and their three-dimensional orientations simultaneously
for each individual emitter. This directly gives us the angle γ in between both the
vectors. We perform experiments on two dye molecule species, and the results show
a non-negligible γ. We speculate that this arises due to a significant rearrangement in
the backbone structure of the molecule following the excitation as a result of vibra-
tional relaxations before the emission occurs. The feasibility of these two methods
for smMIET experiments is also discussed.
Parts of this chapter and some figures have been published in the following journal
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4.1 Radially Polarized Laser Excitation

In contrast to a linearly, circularly or elliptically polarized light beam, a radially
polarized laser beam has spacially varying polarization across any cross section per-
pendicular to the propagation direction at any moment of time. More specifically, a
radially polarized laser represents an electric field oscillating along the radial direc-
tion at any point in its cross section. Figure4.1 shows such a cross section. There
are several ways to produce such a laser beam. Two of the widely used ways are
by employing liquid crystal mode converters, or using four/eight half-wave plates
oriented in each quadrant/octant in such a way that they rotate the incident linearly
polarized laser beam into a radially polarized doughnut beam [1, 2].

Let us define a coordinate system such that the z-axis is along the direction of the
propagation of the beam. Then the electric field, before focusing into an objective,
can be written as

Fig. 4.1 A radially polarized laser beam cross section. The double arrows show the plane of electric
field oscillations. The polarization in the center is undefined. Note the axial symmetry and doughnut
like intensity profile
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E0 = fr (r)

⎛
⎝

E0 cosφ
E0 sin φ

0

⎞
⎠ (4.1)

whereφ is the anglemeasured fromadefined direction, say the verticalwith respect to
the laboratory reference frame. The function fr (r) is the shape factor which accounts
for the doughnut intensity profile, which can be assumed as a Gaussian function of
radius r with maximum at a certain r0 and width r0/2 as a simple approximation;
fr (r) = e−[(r−r0)2/r0]. Now, if one places a linear polarizer in the beam path and
rotates it, a dumbbell shaped intensity profile rotates according to the plane of the
polarizer.

We would now like to study the structure of the electromagnetic field when such
a radially polarized beam is focused to a point through an objective, which will
be assumed as ideal lens system without any kind of aberrations. For the sake of
simplicity, let us consider the situation where the medium on the other side of the
lens is homogeneous, and has a refractive index n. The basic theory below can be
extended to the more realistic case where there is a dielectric interface in between
the lens and the focal plane. The beauty of the problem can be appreciated when one
realizes the perfect radial symmetry of the beam around the optical axis. Figure4.2
shows a simple geometrical picture of the situation. At the focal pointO, the electric
field vectors are arranged in a conical fashion as shown in the figure. Therefore, on
the optical axis, they add up to yield a net z-polarized electric field, the longitudinal
component of the field in the focal plane. On the other hand, moving approximately
λ /3 away from the point O along any direction in the focal plane rp, the opposite
vectors are now in-phase and add up to yield a net transverse electric field along the
unit vector r̂p.

A more precise treatment of the problem can be done by pursuing the work
performed by Török and coworkers [3]. Writing the time-independent electric field
at point rp as a summation of plane waves, we have

E(rp) = − ik

2π

∫∫
�

a(sx , sy)

sz
eik(ŝ·rp) dsxdsy (4.2)

where s is the vector along a light ray from the lens to the focus O, a is the electric
field vector after the lens and k is the wave number. The integral is defined over the
solid angle � which is defined by the numerical aperture of the lens/objective. Now
what remains is the calculation of the electric field a after the lens, as a function
of the rays passing through the lens and propagating along the direction of vector s
to the focal point O. This can be done by taking the incident electric field E0 and
rotating its angle by θ as it traverses through the lens.

∴ a(sx , sy) = cos1/2 θ fr (θ)

⎛
⎝

E0 cosφ cos θ
E0 sin φ cos θ

E0 sin θ

⎞
⎠ (4.3)
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Fig. 4.2 A radially polarized
laser focused through a lens.
The arrows point in the
direction of the electric field
polarization before and after
the lens. At the optical axis
in the focus, the electric
fields add up to yield only a
net z-polarized electric field

where the factor cos1/2 θ comes from the fact that the system follows Abbe’s sine
condition [4]. Note that now the shape function fr is written in terms of θ instead of
r . Transforming the integral variables sx and sy into spherical coordinates, we have

E(rp) = − ik

2π

∫∫
�

a(φ, θ)

s cos θ
eik(rpκ) sin θ sin θdθdφ (4.4)

where κ = n[sin θ sin θp cos(φ − φp) + cos θ cos θp], sz = s sin θ, and n is the
refractive index of the medium. Splitting the total electric field as its x, y, z compo-
nents, we have

E(rp) =
⎛
⎝

ex (rp)
ey(rp)
ez(rp)

⎞
⎠ =
⎛
⎜⎝

−E0
ik
2π

∫
θmax

0

∫ 2π

0 fr (θ) cosφ cos3/2 θ sin θeik0[rpκ]dφdθ
−E0

ik
2π

∫
θmax

0

∫ 2π

0 fr (θ) sin φ cos3/2 θ sin θeik0[rpκ]dφdθ
−E0

ik
2π

∫
θmax

0

∫ 2π

0 fr (θ) cos1/2 θ sin2 θeik0[rpκ]dφdθ

⎞
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(4.5)

where θmax is the maximum aperture of the objective or lens. It must be noted here
that if in the expression of transverse component ex , φ is replaced by (π /2 − φ),
it yields the expression for the field component ey because of the axial symmetry.
Using the identity,
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Jν(x) = 1

2π iν

∫ 2π

0
cos(νθ)eix cos θ dθ (4.6)

the integral for the fields over φ can be written in terms of Bessel functions, and the
complete field in the focus can be written in terms of a transverse component et and
a longitudinal component ez as follows [5]

(
et (rp)
ez(rp)

)
=
(

E0k
∫

θmax

0 fr (θ) cos3/2 θ sin θeik[rp cos θ cos θp] J1(krp sin θ sin θp)dθ
2i E0k
∫

θmax

0 fr (θ) cos1/2 θ sin2 θeik[rp cos θ cos θp] J0(krp sin θ sin θp)dθ

)
.

(4.7)

The complete treatment for the case when one focuses such a doughnut beam through
a high numerical aperture objective (N.A. = 1.49) through a dielectric interface
involves the calculation of the transmitted field using Fresnel equations and trans-
mission coefficients [3]. Since the electric field has only p-waves in any plane con-
taining the ray and the optical axis, the problem is much simpler and the field vector
a after the dielectric interface can be written similar to Eq.4.3

a(sx , sy) = cos1/2 θ1 fr (θ1)

⎛
⎝

Rp E0 cosφ cos θ2
Rp E0 sin φ cos θ2

Rp E0 sin θ2

⎞
⎠ (4.8)

where Rp is the reflection coefficient for the p-waves as given in Eq. (2.61), θ1 and θ2
are the angles of the ray with respect to the optical axis before and after the dielectric
interface related to each other by Snell’s law of refraction, n1 sin θ1 = n2 sin θ2.
Proceeding as above, one can write equations for the transverse and longitudinal
field components similar to Eq. (4.7). Figure4.3 shows the calculated intensities of
both components above a glass/water interface.

The longitudinal component of the field arises due to the interference of the p-
waves from all angles around the focus. In principle, since there is no electric field
along the optical axis before and after the lens, the Poynting flux along this axis
is zero. Thus, the longitudinal component has to be a non-propagating field. This
field component can be probed only by monitoring the fluorescence intensity of a
molecule that can couple with it [6]. This is similar to exciting a molecule with the
non-propagating evanescent waves in TIR excitation. The amplitude of this field, as
can be seen from Fig. 4.3, is much stronger as compared to the transverse component
and it increases with the increase in N.A. of the lens. The structure in the focal
plane can be obtained by putting θp = π /2 in Eq. (4.7). Figure4.4 shows the field
components in the focal plane for a lens of numerical aperture (N.A.) 1.49 on a
glass/air interface.

4.1.1 Excitation Patterns

Almost all fluorescent molecules can be approximated as electric dipole oscilla-
tors, and many of the absorption and emission properties can be described under this
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Fig. 4.3 Top The intensity of the transverse field components in a xz-plane on top of the glass
surface at a glass/water interface. The optical axis is along the zero ρ = 0. All dimensions are
in μm. The intensity is normalized to the maximum of the longitudinal component. Bottom The
intensity of the longitudinal component in the focus

Fig. 4.4 Electric field components and phase in the focal plane of a radially polarized focus can
be seen as a summation of electric fields of polarizations around the x, y and z-axes. Calculations
performed for N.A. = 1.49 at the glass/water interface. All axes in μm

assumption. However, exceptions exist, such as NV− color centers in diamonds, rare-
earth metal-chelates which behave as two dimensional degenerate dipoles, magnetic
dipoles. Substituted metal-free phthalocyanine and porphyrazine structures exhibit
fast photo-induced tautomerization between their cis- and trans- molecular confor-
mations such that they behave as double-dipole structures [7].
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Fig. 4.5 Calculated intensity scan patterns of single dipoles with a focused radially polarized laser
excitation. The N.A. of the objective was 1.49, pixel size 50 nm at wavelength λ = 514 nm. The
molecules are assumed to be on top of an air/glass interface, and theminimum angle for illumination
θmin was set to be ∼20◦. Each pattern spreads over ∼1μm. Note that the images show normalized
intensities. From top left to bottom right, α and β values are

Column/row 1 2 3 4 5
α, β α, β α, β α, β α, β

1 90◦, 0◦ 90◦, 60◦ 90◦, 120◦ 75◦, 0◦ 75◦, 60◦
2 75◦, 120◦ 75◦, 180◦ 75◦, 240◦ 75◦, 300◦ 60◦, 0◦
3 60◦, 72◦ 60◦, 144◦ 60◦, 216◦ 60◦, 288◦ 45◦, 0◦
4 45◦, 90◦ 45◦, 180◦ 45◦, 270◦ 30◦, 0◦ 30◦, 120◦
5 30◦, 240◦ 15◦, 0◦ 15◦, 180◦ 0◦, 0◦ −, −

Scanning an immobilized single molecule with a focused radially polarized laser
beam produces an intensity pattern as a function of position which relates to the
probability of exciting it with the structured electric field inside the focal volume.
The probability to excite a molecule is proportional to the component of the electric
field oriented parallel to its transition dipole, and therefore the intensity recorded
as a function of position can be written as I f ∝ |E(r) · pexc|2, the proportionality
constant being the collection efficiency of the system times the quantum yield of
the dye. Unique intensity patterns for various orientations of the excitation dipole
pexc are obtained. Figure4.5 shows calculated patterns for a few orientations of the
excitation transition dipole.
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Depending upon the orientation of the pexc, different proportions of the longitu-
dinal and transverse components in the focus excite the molecule. Notice that for
molecules lying flat on the surface (α = 90◦), the patterns have two C2v symmetry
planes, one along the dipole orientation, and the second perpendicular to it. There-
fore, for the azimuthal angles β and β + 180◦, identical scan patterns are observed.
Due to the strong longitudinal component at the optical axis, orientations close to
vertical, (α < 60◦), appear nearly indistinguishable. The ratio of the longitudinal
and transverse components depends upon the N.A. of the objective and the size of
the doughnut in the center. As described previously, an increase in N.A. increases the
longitudinal component, which can bemainly attributed to the planewaves approach-
ing the focus at high angles. On the other hand, reducing the size of the doughnut
increases the in-plane radially-polarized transverse field. Figure4.6 shows the scan
images for a narrow excitation beam width such that the angles formed by the rays
are below the critical angle at the air/glass interface (θc < 41.14◦, subcritical angle
excitation) and images formed with a focus achieved from excitation rays above
the critical angle (TIR excitation). Two important points must be stressed: 1) The
excitation patterns formed by the subcritical excitation are spread over a larger area
covering more pixels; 2) in the case of TIR excitation, the patterns show pronounced
side rings as compared to the full-beam excitation.

4.1.2 Experimental Setup

A custom-built confocal microscope with a pulsed white-light laser was used where
the excitation beam path was modified with a liquid crystal mode converter (ARCop-
tix S.A.) in order to produce a radially polarized beam. The detailed setup description
is as follows:

Fig. 4.6 The top row shows excitation intensity patterns taken with a full beam, completely filling
the back aperture of a 1.49 N.A. objective with a doughnut which leads to a θmin ≈ 20◦. The middle
row represents the patterns for a subcritical angle excitation, θmin ≈ 20◦ and θmax ≈ 36◦; and the
bottom row for a TIRF excitation θmin ≈ 52◦ and θmax ≈ 78◦. The polar angles α of the dipole
for the patterns left to right are 90◦, 80◦, . . . , 10◦, 0◦. Note that the images show normalized
intensities
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1. Excitation system: A circularly polarized pulsed white-light laser (Fianium
SC400-4-80) with a pulse width of 50 ps and 20MHz repetition rate was split into
two linearly polarized beams using a polarizing beamsplitter. Each beam together
with an acousto-optic tunable filter (AOTFnC-400.650-TN) served as indepen-
dent excitation sources. The spectrally filtered polarized beams were coupled
into separate polarization-maintaining single-mode optical fibers (PMC-400-4.2-
NA010-3-APC- 250 V, Schäfter and Kirchhoff, Germany), and thereafter colli-
mated out to two individual beams of 4mm diameter using infinity-corrected 10×
objectives (UPLSAPO10X, Olympus). This step ensures a high quality TEM00

(transversal electromagnetic) mode excitation beam required for the experiments.
A clean-up filter depending upon the wavelength required for the experiment
(for eg., Z640/10X, Chroma Technology) was used to block unwanted wave-
lengths from the laser after the collimation. Whereas the horizontally polarized
collimated light source was coupled directly into the microscope, the vertically
polarized beam was led through a series of optical elements to generate a radi-
ally polarized laser. A mirror mounted on a magnetic flipping system (KB75/M,
Thorlabs Inc.) was used to select between the two excitation sources. For the
mode-conversion, an additional linear polarizer (LPVISE 100-A, Thorlabs Inc.)

Fig. 4.7 Sketch of the complete experimental setup. The excitation beam paths are shown in yellow
whereas the emission is guided through the paths marked in red



96 4 Single-Molecule Transition Dipole Imaging

was added to further ensure the polarization of the beam, which is crucial for
the beam quality after the mode-conversion. This beam was then passed through
the liquid crystal cell which rotates the incident polarization into a radially or
azimuthally polarized Laguerre-Gaussian beam depending if a voltage is sup-
plied to the polarization rotator cell present in the mode converter or not. For a
complete description of themode converter, the reader is referred to the documen-
tation of the device (http://www.arcoptix.com/index.htm). Thereafter, the beam
was focused into a 25μm pinhole and collimated up using a pair of achromatic
doublet lenses (AC254-075-A,AC254-150-A, Thorlabs Inc.) as shown in Fig. 4.8.
This step is essential in order to reject any unnecessary higher order modes which
might be present after the mode-conversion.

2. Microscope: The excitation sources were reflected onto a 30 R : 70 T non-
polarizing beamsplitter cube inside themicroscope into the back aperture of a high
N.A. objective (UAPON 60XOTIRF, 1.49 N.A., Olympus). The non-polarizing
beamsplitter was used here instead of a dichroic mirror in order to ensure that the
beam is devoid of any unwanted polarization or astigmatic aberrations. This leads
to the loss of fluorescent photons. A better solution to this drawback would be
to use a 10 R : 90 T beamsplitter and higher excitation laser power. The sample
was fixed on top of a piezo stage (P-562.3CD, Physical Instruments) that was
driven using a digital piezo controller (E-710.3CD Physical Instruments). The
collected fluorescence (through the same objective) is focussed onto a pinhole
of 100μm through a tube lens ( f = 180mm) for confocal imaging. A part of
the laser was reflected back into the excitation pathway by the beamsplitter. For
excitation beam diagnosis, a 10 R : 90 T beamsplitter was introduced into the
excitation pathway. The 10% of the back-scattered laser was then focused onto a
sensitive CCD camera (Pike F145B, 15 fps, Allied Vision Technologies), which
we refer to as the back-reflection camera.

Fig. 4.8 Generation of a radially or azimuthally polarized laser beam from a linearly polarized
beam. Linearly polarized laser is collimated using an objective, mounted on a z-translation mount
(SM1Z, Thorlabs Inc.) on the right end. The liquid crystal mode converter is mounted on a custom
built mount which is coupled to an xy-translation (ST1XY-A/M, Thorlabs Inc.) and tilt stages (KC1-
T, Thorlabs Inc.) for aligning the liquid crystal cell with respect to the incident beam. Thereafter,
the output beam from the mode converter is focused through a pinhole for mode cleaning

http://www.arcoptix.com/index.htm
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3. Detection system: After it was passed through the pinhole, the emission light was
recollimated using an achromatic doublet (AC254-150-A, Thorlabs Inc.). Since
we use a non-polarizing beamsplitter in place of a conventional dichroic mirror,
the backscattered laser was blocked using a long-pass filter, depending upon the
excitationwavelength (for eg. EdgeBasicBLP01-647R, Semrock). Thereafter, the
emission light could be guided into three subdetection systems using a custom
designed flipping mirror assembly:

• single photon counting detection system
• high sensitivity spectrophotometer
• defocused imaging

For this section, the single photon counting subsystem mode was used and thus
will be described here in detail. This subsystem has a two-color two-polarization
detection scheme consisting of four single photon avalanche photodiodes (2 × τ -
SPAD and 2×Micro Photon Devices (MPD), Picoquant). Their maximum detec-
tion efficiencies of 70% and 50% are at wavelengths ∼700 nm and ∼500 nm
respectively. The emission light was first split using a polarizing beamsplitter
(PBS251, Thorlabs Inc.), and later spectrally divided by two dichroic mirrors
(for eg. FF580-FDi01, Semrock) which were mounted in custom-built replace-
able cube/plate holders. The photons were focused onto the active area of the
detectors (diameter ∼100–150μm) using achromatic lenses (2× AC254-030-
A, Thorlabs Inc.). The two-color two-detector scheme allows a broad range of
options for the detection of emission photon stream and choice of experiments
such as anisotropy and rotational diffusion measurements, fluorescence corre-
lation, antibunching experiments, and cross correlation experiments with up to
four spectral channels. Band-pass filters can be used in front of the photodetec-
tors in order to narrow down the spectral range of the detected photons around
the maximum emission wavelengths of the fluorescent species and improve the
signal-to-background ratio (eg. FF01-692/40 Semrock, FF02-525/40 Semrock,
for Atto 655, Green Fluorescent Protein, respectively).

For the work presented in this section, we use only one τ -SPAD unless men-
tioned otherwise. The details of the remaining subdetection systems will be
explained in detail in the relevant sections in this thesis.

4. Data acquisition and synchronization: The scanning, data recording, synchro-
nization of all the hardware and measurement visualization was done using a
custom written LabView software. The NIM (Nuclear Instrumentation Module)
output from the detectors were recorded and timed with a 2 ps time resolution
using a multichannel event timer and Time Correlated Single-Photon Counting
(TCSPC) module in the Time-Tagged Time-Resolved (TTTR) acquisition mode.
We use a HydraHarp 400 (PicoQuant, Berlin) for most of the experiments. This
event timing module has the capability to incorporate upto 64 input channels,
while using one channel for an input from an external periodic signal such as a
pulsed laser. The detection channels can be used for recording photons separated
on the basis of their polarization or wavelength as was shown in the setup designs
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in Fig. 4.7. By plotting a histogram of the arrival times with respect to the pre-
ceding laser syncs (microtimes) of all the photons in their respective channels,
one has the classical TCSPC for each detector; and by binning the photons using
their macrotimes into time bins of several microseconds to milliseconds, we get
intensity time traces for each detection channel. In this way one can perform all
correlation based experiments (FCS, FLCS, etc.), Fluorescence Lifetime Imaging
Microscopy (FLIM), and several other types of data evaluation on the photon data
stream depending upon the nature of the experiment and study processes from
picoseconds to seconds range. The line-markers, representing the start and end
of a scan line were obtained from the piezo controller and recorded as ‘special’
photons by the TCSPCmodule itself. The recorded data was later processed using
custom written Matlab routines.

4.1.2.1 Alignment

One need not mention the necessity, and the arduous effort required, for a proper
alignment in a custom-built microscope. In this section we describe the alignment
details for a good quality radially or azimuthally polarized excitation. As described
in the previous section, we use an apochromatic objective to collimate the laser out of
a polarization-maintaining single-mode optical fiber to obtain a high quality TEM00

mode. The vertically polarized collimation beam was centered on the window of the
mode converter in order to ensure a symmetric radially polarized beam. Any tilted or
shifted incidence of the beam on the mode converter would show up as asymmetry
in the beam cross section after passing through the pinhole. One can check for such
asymmetries by placing a white paper target after the collimating lens. Further, the
mode quality can be verified by introducing a linear polarizer, mounted on a rotating
lens mount, in between the paper target and the lens. A perfect radially polarized
beam will produce a ‘coffee-bean’ shaped intensity profile, similar to Fig. 4.4 left.
By rotating the linear polarizer, one should also observe a rotation in the coffee-bean
shaped intensity profile, with a dark line perpendicular to the axis of the polarizer (for
azimuthally polarized beam, it will be parallel). Once a good radially polarized mode
is achieved at this point, the beam is reflected into themicroscopewith a set ofmirrors
giving us the freedom to shift and tilt the beam for a centered and normal incidence
in the back aperture of the objective. In order to achieve this, the image formed on the
back-reflection camera is useful. When the glass/air interface of a usual coverslip is
in the focal plane of the objective, the back reflected light is focused onto the camera.
For a perfectly aligned excitation system, the spot defocuses symmetrically on the
back reflection camera when the objective is moved up or down relative to the focus
position. Any tilt or shift would then show up as an asymmetric and shifted image
on the camera. Further, aberrations such as astigmatism show up as an elliptical or
distorted spot on the image when the objective is in the focus position.

The conclusive check for the doughnut beams was done by scanning ∼20 nm
sized fluorescent beads on a surface. These beads contain ∼200 single dye mole-
cules oriented randomly inside and therefore act as isotropic absorbers/emitters with
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Fig. 4.9 Excitation intensity patterns of fluorescent beads (Nile Red, 20 nm) scannedwith a radially
polarized laser (left) and an azimuthally polarized laser (right) with a wavelength λexc = 488 nm
with a 1.49 N.A. objective

respect to electric field polarization. This method was used previously to check the
mode of the beams [7]. A diluted solution of beads is spin-coated gently at a speed
of 800 rpm on top of a clean glass coverslip distributing them in such a way that they
can be probed by our excitation focus individually. Scanning them with the gener-
ated radially polarized laser and subsequently with an azimuthally polarized laser1

focused at the glass/air interface probes the structure of the electric field present in
the focus. Figure4.9 shows a scan image of such beads with a well aligned beam.

4.1.3 Single-Molecule Excitation Images

Samples were prepared by spin-coating dye molecules on plasma cleaned glass cov-
erslips (refractive index = 1.52, thickness ∼170μm, Menzel). The dye molecules
were dissolved either inwater/organic solvent, or in a diluted polymer solution such as
0.1%w/v Poly(vinyl alcohol) (Mowiol 4-98, Sigma-Aldrich) in water or 0.1%w/v
Poly(methyl methacrylate) (Sigma Aldrich) in toluene. The concentration of the dye
in the solutions was kept between 0.1 − 1 nM in order to obtain a surface density of
less than 1μm−2 in the prepared thin films. With such a molecule density, one can
excite molecules separately with the focused radially polarized laser and obtain scan
patterns separately.

The pixel size was chosen between 40–70nm, with a dwell time of 3–10ms per
pixel, and a laser power between 1 − 25 kWcm−2 depending upon the brightness
and photostability of the molecule. Figure4.10 shows two images of 8 × 8μm and
20 × 20μm showing intensity patterns of Rhodamine 6G molecules spin-coated

1An azimuthally polarized laser has an electric field pointing in the tangential direction at each point
across its cross section. When focused through an objective it has only a transverse component in
the focal plane with no electric field along the optical axis.
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Fig. 4.10 Scans of Rhodamine 6G spin-coated on a cleaned glass coverslipwith a radially polarized
excitation laser with a pixel size of 70 nm. Wavelength λexc = 488 nm was used for excitation with
a power of ∼5 kWcm−2 with a pixel dwell time of 4ms

on top of a glass coverslip. The important point to notice in these images is that a
majority of the intensity patterns correspond to dipoles which are oriented parallel
to the surface, as can be observed from Fig. 4.5, which shows that these molecules
lie flat on the surface, given their planar structure. One can also notice the random
in-plane orientation of the molecules from these scan patterns. Each of these patterns
spreads over 0.5μm across.

Ideally, one expects to see these molecules to behave identically and therefore
show equal brightness in the scan image. However, as one can clearly see in the
figures, this is not the case. This can be attributed to various parameters affecting
the brightness of the molecule. Neglecting any orientation effects and electric field
polarization,which do not play any significant role in the excitation of parallel dipoles
using a radially polarized laser, the fluorescence intensity from a molecule, based on
a simple and standard three state model, can be written as

I f ∝ kexckphτη (4.9)

where kexc is the rate at which the molecule is excited from its singlet ground state
to the single excited state. This rate is directly proportional to the absorption cross
section of the molecule and for an organic fluorophore, the rate is typically on the
order of 107 s−1. kph is the rate of triplet decay or the rate of phosphorescence, a
phenomenon bywhich amolecule in its triplet state returns to its singlet ground state.
Usually, one has kph ∈ [106 s−1 104 s−1]. η is the collection efficiency of the optical
setup. Taking into account the collection efficiency of the objective, the losses at each
optical element, and the detector efficiency, one usually has a collection efficiency
η ≈ 1 − 10%. τ is the lifetime of the excited state of the molecule, typically in the
order of 10−9 s. It is related to Fermi’s golden rule, which represents the probability
of a transition to take place
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1

τ
= 8π ω

3�
|p|2ρ(r,ω) (4.10)

where p is the transition dipolemoment of themolecule,ρ is the local electromagnetic
density of states, r is the position of themolecule on the surface andω is the transition
frequency.

While η remains constant for all the molecules in a scan image, the rest of the
parameters are effected by the interactions of the molecule with the substrate. Local
charges present on the substrate lead to various electrostatic interactions with the
charges on the molecule which in turn deform its backbone conformation. Such
distortions would directly lead to spectral shifts, therefore altering the absorption
cross sections, the transition dipoles pexc and pem, and also the decay lifetimes 1/kph
and τ [9, 10], therefore affecting the overall brightness of the dye. The triplet state
lifetime is typically in the order of few μs for dye molecules which is two orders of
magnitude less than the scan rates. Therefore, one sees only the averaged photon rates.
Depending on the structure, there can be multiple binding states and the molecule
can switch to and fro between the states with a certain rate [11]. This is one of the
several reasons that one occasionally observes blinking during the scanning process.
Long living dark states due to photoinduced oxidation or reduction reactions also
lead to observable blinking effects in a scan image.

The Left side of Fig. 4.11 shows the TCSPC histograms of photons collected from
the pixels corresponding to 16 individual molecules from the left image shown in
Fig. 4.10. The figure also shows the fitted curves with a mono-exponential decay
model. The right side of the figure shows a plot of average count rates observed from
the scan images versus the rate of decay for about 480 Rhodamine 6G molecules.
Any correlation between the points in such a plot would show the direct influence of
the local environment on the brightness of the molecule. A slight trend can be seen
here, whichmight indicate local effects of the substrate onRhodamine 6Gmolecules.
Since the molecules are excited with a fixed wavelength, the spectral shifts cannot
be accounted for while estimating the detected photon count rates. For example a
hypsochromic shift by only a couple of nanometers can alter the absorption cross
section at the wavelength used for excitation severely which would be reflected in
the observed count rates, and there is no way to disentangle such an effect from the
changes observed in decay rates. For closely studying such effects, one would need
to estimate the excitation spectra using measurement approaches such as Spectrally-
Resolved Fluorescence Lifetime Imaging (SFLIM) [10, 11].

In some rare cases, the molecules on the glass surfaces showed rotational jumps
that lead to a change in their dipole orientations. Figure4.12 showsone such incidence
where a molecule undergoes rotational jumps twice during the whole scan. Such
instances have been observed before by Ha et al. [12] using polarization modulation
spectroscopy. An important observation from the calculated fluorescence lifetime
image is that the rotational jumps do not change the decay rates of the molecule.

Single molecules in their excited singlet and triplet states are prone to two-step
excitation where they are excited to higher electronic states. Molecules in these
excited states are labile and undergo irreversible reactions with water or oxygen
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Fig. 4.11 TCSPC curves and fits of photons collected from 16 molecules shown in the left panel
of Fig. 4.10. The fitting was done using a parametric model for the instrument response function
(IRF) as given in [8]. The right panel shows the distribution of the rate of photons measured versus
the rate of excited state decay

Fig. 4.12 Scan image of Atto 655 molecules spin-coated on top of a glass surface. Image acquired
with a pixel size of 60nm and dwell time of 3ms at λexc = 640 nm, with an excitation power of
∼5 kWcm−2 in the focus. The highlighted area shows a scan of a single molecule which undergoes
rotational jumps twice. The top right image shows the average photon arrival time for each pixel.
Observe that the fluorescence lifetime after each jump remains the same as before
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Fig. 4.13 Scan image with a focused radially polarized laser of Rhodamine 6G embedded in a thin
PVA layer with a pixel size of 60 nm and a dwell time of 4ms/pixel. The excitation wavelength
was set to λexc = 488 nm with an excitation power of 5 kWcm−2 in the focus

leading to the destruction of the chromophore (photobleaching) [13]. Oxygen in the
vicinity of a dye molecule plays a major role in the photophysics. The triplet state of
a fluorophore is annihilated by the oxygen molecule, effectively returning it to the
singlet ground state. During this process, also singlet oxygen is formed which, on the
other hand, can react with the fluorophore when present in higher singlet or triplet
states thereby causing photobleaching. Therefore, depending on the photophysics
of the dye alone, one can optimize the oxygen concentration in its surroundings in
order to improve its stability. For this reason, dyes are embedded in rigid polymer
matrices [14]. The diffusion of oxygen is reduced in these polymer films and varies
from polymer to polymer. For example the permeability of oxygen in poly(methyl
methacrylate) (PMMA) is much lower than in a polycarbonate membrane [15]. The
oxygen concentrations in these membranes also depend on the thickness of the film
which affect the molecule’s overall brightness and stability.

Rhodamine 6G molecules were embedded in a polyvinyl alcohol (PVA) matrix
and flushed with N2 gas in a closed sample chamber. The scan images of single
molecules in this thin film show randomly oriented excitation dipoles with respect
to the vertical axis, in contrast to the previous measurements on a glass/air interface.
Since the intensity of the scan patterns depends on the electric field components
in the focal spot, I f ∝ |E(r) · pexc|2, the molecules with orientations close to α = 0
appear brighter than the horizontal molecules (α = 90◦). Figure4.13 shows one such
scan image. As can be seen, compared to the molecules that are oriented horizon-
tally, the near-vertical (α > 60◦) are roughly two to three times brighter. Also, the
horizontal molecules appear brighter than the average brightness of a molecule on
glass substrate.
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In order to estimate the orientations of the emitters shown in the scan image,
we calculate model images of a single molecule emitter scanned with a radially
polarized excitation focus as was shown in Sect. 4.1.1 and perform a least-square
error minimization fitting using the model patterns as was done by Patra et al. [16],
which will be described briefly in the section that follows.

4.1.4 Pattern Matching

The first step of pattern matching is the calculation of model patterns. This involves
the exact wave-optical calculations of excitation patterns for molecules located in
a medium of known refractive index, sandwiched between stratified layers of the
substrate beneath and above,with their thicknesses, through ahighnumerical aperture
objective. Patterns are calculated for a pre-determined in-plane angle β and out-of-
plane angle α. The next and final step is to locate the modeled patterns within the
measured scan image using a custom written Matlab routine based on the work
in [16]. Briefly, for each calculated pattern, an error image is calculated according
to the equation

e(r)
mn = (X2)mn − (Q(r)

mn)
2 + (Xmn)

2 − 2P (r) Q(r)
mn Xmn

1 − (P (r))2
(4.11)

where (m, n) is the index in the scan image and the error is calculated for each pattern
p(r). (X2)mn is the 2-dimensional convolution of the square of the raw image xmn

with a background matrix with a finite support s, which is usually the size of the
pattern (2L + 1, 2L + 1) or a circular disk of fixed number of pixels or radius L .
The rest of the matrices are defined as
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∑L

j=−L

∑L
k=−L s jk xm+ j,n+k√

(
∑L

j=−L

∑L
k=−L s2jk)

,

Q(r)
mn =
∑L

j=−L

∑L
k=−L s jk xm+ j,n+k p(r)

jk√
(
∑L

j=−L

∑L
k=−L s2jk)

,

P (r) =
∑L

j=−L

∑L
k=−L s jk p(r)

jk√
(
∑L

j=−L

∑L
k=−L s2jk)



4.1 Radially Polarized Laser Excitation 105

Fig. 4.14 Figure showing the raw intensity image of Rhodamine 6G molecules in a thin PVA
polymer scanned by a radially polarized laser together with the patterns matched by the least-
squares minimization algorithm. In total, 86 molecules were identified. The pixel size of 60 nm,
refractive index of the PVAwas set to 1.5 and N.A.= 1.49 were used to calculate the model patterns

For each pattern, a coefficient C (r)
mn is calculated by the equation:

C (r)
mn = (Q(r)

mn) − P (r) Xmn

1 − (P (r))2

After calculating Cm,n and em,n for all the patterns, the least error ẽmn = e(t)
m,n and

the corresponding coefficient C̃mn for each pixel are obtained and the pattern p(t)

responsible for the minimum error is identified. Only if the ratio C̃mn/
√

ẽmn < κ,
the pattern p(t) is identified as a good pattern centered at the pixel. If the value κ is
predefined close to one, only those intensity patterns having a good signal-to-noise
ratio and agreementwith themodeled pattern p(t) are given out. Figure4.14 shows the
recognized patterns for Fig. 4.13. The fitted image carrying the recognized patterns
and the positions is calculated by Imn(xi , yi ) = C̃mn(xc, yc) × p(t) where xc, yc is
the position recognized by the molecule and xi , yi go from xc − L → xc + L and
yc − L → yc + L respectively. As a secondary result, one predicts the position of
the molecules in the image at the pixel representing the minimum error.

Even though the pattern matching works nicely, there are several limitations. One
of the major limitation which is intrinsic to the method is the limited number of
model patterns. One usually calculates the patterns with a step of 10◦ for α and β,
which automatically translates into the resolution of the fitting. Fitting with patterns
calculated for smaller step sizes greatly slows down the pattern matching. The sec-
ond disadvantage is that the molecules have to be separated in space in a way that
their intensity patterns do not overlap, which otherwise leads to false results. Also,
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Fig. 4.15 Left figure shows the recognized intensity patterns against the patterns matched. Every
odd row shows the cropped raw image patterns and the row beneath shows the matched patterns.
The right image shows the positions of the centers as cyan dots for the matched patterns

molecules which show blinking behavior may not be recognized or may lead to false
results as well, which can be seen in Fig. 4.15.

Pattern matching, apart from of course obtaining the orientations of the dipoles,
comes as an effective tool for single-molecule data analysis. Since one identifies the
pixels corresponding to each individual molecule, the collected photons from these
pixels can be used for estimating decay rates and photophysical properties such as
blinking behavior with much more statistics yielding a much higher accuracy than
evaluating for each individual pixel. As stated and shown above, one has the position
information of the dipoleswhich can be used for localizationmicroscopy. Performing
scans with a smaller pixel size can improve the lateral localization accuracy down
to 30 nm. Further, combining the radial scanning with our smMIET method would
allow one to localize these emitters with nanometer accuracy along the z-axis, which
remains a challenge for several superresolution techniques (see Chap. 1). Figure4.16
shows the lifetime image for the 86 identified molecules from image of Fig. 4.13.

The fitted lifetime values vary between 1.6 ns to 7.5 ns with an average of 4.5 ns
and a standard deviation of 0.9 ns (see Fig. 4.17). The variation in the lifetime values
can be attributed to two main reasons.

The first reason is the relative position and orientation of a dye molecule with
respect to the polymer/air on the top. As was described in the theory chapter, the
presence of a dielectric interface, such as in between the polymer (refractive index of
1.5) and air, can lead to adramatic change in the emissionproperties of a dipole such as
the angular distribution of the radiation and the total power radiated (see Sect. 2.4.2).
The lifetime values, especially of a vertical dipole, change significantly close to the
interface separating the embedding medium and air (see Fig. 2.23 for example). As
the distance from this interface increases, the lifetimes of the dipoles approach to
the free space value inside the medium τ0. We collected the lifetime values and the
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Fig. 4.16 Image showing the fluorescence lifetimes of the identifiedRhodamine 6Gmolecules. The
lifetimes are calculated by collecting the photons from all the pixels belonging to each individual
molecule. The fitting is done using a calculated IRF using a parametric model [8]. The intensity
patterns which were not recognized by the pattern match algorithm, and therefore do not have a
lifetime estimate, are shown in gray scale inside the lifetime image

Fig. 4.17 The TCSPC curves and fits of three individual molecules from Fig. 4.16. The curves in
red and blue showing lifetimes of 1.6 and 7.5 ns are the two extreme cases observed

fitted orientations for about 630 Rhodamine 6G molecules from measurements such
as shown in Fig. 4.13. Since the quantum yield of the dye is close to unity in aqueous
solutions, we make a simple assumption that only the radiative rates change due to
the presence of the molecule in the polymer. Using this assumption, the free space
lifetime τ0 of the dye and the quantum yield� are about 3.6 ns and 0.95, respectively.
The blue data in Fig. 4.18 shows the distribution of the average lifetimes as a function
of the inclination angle of the dipoles in the polymer. Assuming a uniform height
distribution of the dyemolecules throughout the thickness of the polymer film, the red
curve shows the theoretical lifetimes averaged over a thickness of 70 nm as a function
of the orientation. Although the data is in good agreement with the theoretical curve,
which corroborateswith the argument that strong variations in lifetime values in a thin
polymer film are observed due to the interface effects, the correct estimates for free
space parameters (τ0 and �) and the thickness of the polymer can be obtained only
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Fig. 4.18 Average lifetime of a Rhodamine 6G molecule’s excitation transition dipole oriented at
an angle α with respect to the vertical in a thin polymer film (n = 1.5) of thickness ∼70nm with
glass below and air above. The variation within the thin polymer layer is neglected and has been
averaged over all heights

through further experiments. Onemustmeasure dyemolecules inside a thick polymer
away from any dielectric interface in order to estimate the free space parameters.

Secondly, the presence of any chemical heterogeneity of the polymer matrix
they are embedded in can adversely affect the excited state lifetime values. As was
described in detail above, the dye molecules are highly sensitive to properties such
as local viscosity and charges. The variations in the photophysical properties of
single molecules can be attributed to the various possible interactions with the poly-
mer matrix. Of course, changes in the structure of the backbone, the presence of
oxygen, and liquid “pockets” in the vicinity of the molecules alter their properties
dramatically. Before performing smMIET experiments, it is mandatory to select an
appropriate matrix for immobilization and check for the uniformity of the lifetime
values.

4.1.5 Multidimensional Emitters

An important application of radially polarized laser scanning, apart from the ori-
entation information, is the determination of the dimensionality and geometry of
the excitation transition. Almost all organic fluorophores show single dipole transi-
tion behavior. However, this is not true for all single emitters. The nitrogen-vacancy
(NV−) center in diamonds for example shows a two dimensional degenerate transi-
tion dipole [17]. Quantum dots, on the other hand, show an isotropic three dimen-
sional excitation transition probability. Which means, scanning these samples with
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a radially polarized laser focus, gives patterns which are different from single dipole
patterns and can be visualized as a sum of two or more dipole patterns. A two dimen-
sional transition of an NV center can be considered as two orthogonal dipoles lying
in the plane perpendicular to the NV center axis. For calculating the scan patterns, we
let one of these two dipoles to be oriented in the xy-plane and the other in the exci-
tation plane perpendicular to it. Since the excitation is degenerate over the plane, we
further simplify the situation by assuming that the two dipoles are of equal strength.
Figure4.19 shows a few modeled intensity patterns for various orientations of the
normal vector tabulated below with a radially polarized excitation. Since the vertical
component of a dipole is excited stronger than its horizontal component, the patterns
for the excitation plane perpendicular to the xy-plane show resemblancewith a single
vertical dipole. One can distinguish such ambiguities only by scanning both,

Fig. 4.19 Calculated intensity scan patterns of a two dimensional degenerate excitation transition
with a focused azimuthally polarized (left) and radially polarized laser excitation (right). The N.A.
of the objective was 1.49, pixel size 30 nm at wavelength λ = 564 nm. The molecules are assumed
to be on top of an air/glass interface, and the minimum angle for illumination θmin was set to be
∼20◦. Each pattern spreads over∼1 × 1μm. Note that the images show normalized intensities and
equal strength of both dipoles. From top left to bottom right, α and β values of the vector normal
to the plane containing the two dipoles are

Column/row 1 2 3 4 5 6
α, β α, β α, β α, β α, β α, β

1 90◦, 0◦ 90◦, 36◦ 90◦, 72◦ 90◦, 108◦ 90◦, 144◦ 70◦, 0◦
2 70◦, 45◦ 70◦, 90◦ 70◦, 135◦ 70◦, 180◦ 70◦, 225◦ 70◦, 270◦
3 70◦, 315◦ 50◦, 0◦ 50◦, 51◦ 50◦, 103◦ 50◦, 154◦ 50◦, 206◦
4 50◦, 257◦ 50◦, 309◦ 30◦, 0◦ 30◦, 90◦ 30◦, 180◦ 30◦, 270◦
5 10◦, 0◦ 10◦, 180◦ 0◦, 0◦ −, − −, − −, −
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Fig. 4.20 Intensity scans of a quantum dot with a radially (left) and azimuthally (right) polarized
laser. The pixel size is 40 nm and the image has an area of 1.8μm × 1.8μm

with a radially and azimuthally polarized laser excitation. For such an orientation of
the excitation plane, the intensity pattern with an azimuthally polarized laser focus
represents a single dipole oriented in the xy-plane. The calculated intensity patterns
for the same orientations of the normal vector with an azimuthally polarized laser
focus are also shown in Fig. 4.19. Only with the help of both scans can one distin-
guish clearly between a single dipole excitation transition and a two dimensional
transition. The intensity patterns for a three dimensional, isotropic excitation transi-
tion probability couple with the complete electric field polarization in the focus and
resemble the scan patterns of fluorescent beads used for checking the alignment of
the laser beam. Spherical quantum dots show such excitation probabilities and thus
their scan patterns look similar to the results shown in Fig. 4.20.

4.2 smMIET with Radially Polarized Excitation

As we saw in the previous section’s discussion, one receives both, the orientations
as well as the excited state lifetime values for immobilized single molecules scanned
with a radially polarized excitation. Together with quantum yield � and free space
lifetime τ0 (the unperturbed lifetime value in a homogeneous medium of refractive
index n) values of the molecules, one can use the modified lifetime values and the
orientations of the transition dipoles with respect to the metal substrate for obtaining
their height above the surface. At a height z, the total energy radiated by a dipole
at an arbitrary angle α with respect to the normal of the surface can be split into
contributions of a parallel and a vertical dipole at the same height above the surface
as

S(α, z) = S⊥(z) cos2 α + S‖(z) sin2 α (4.12)
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This gives us the relationship for the lifetime values for an arbitrarily oriented dipole
in terms of τ0

τ f (α, z) = τ0

�S(α, z)/nS0 + (1 − �)
(4.13)

where nS0 is the power radiated by a dipole in free space (nS0 = cnp2k4
0/3). Before

one can use the lifetime value and the orientation for determining the height of a single
molecule, one must know the free space parameters τ0 and �. For determining the
free space lifetime in a polymer, one must be avoid any dielectric interface based
effects, such as shown in Fig. 4.18. The easiest way is to sandwich a thin layer of
polymer with the emitters dissolved in it between two thick layers (thickness> λem)
on top of a clean glass surface. Such a measurement would provide the free space
excited state lifetime (τ0) of the emitter in the environment used for the smMIET
experiments. Such measurements for Rhodamine 6G molecules in PVA polymer
gave an average fluorescence lifetime of 2.9 ns. Given the free space lifetimes τ ′

0, τ0
in two media of refractive indices n′, n, the quantum yields of the emitter �′,� are
related as

� = �′ · τ0

τ ′
0

n

n′ . (4.14)

Herewe assume that the radiative rateκr of an emitter in bulkmaterial is proportional
to the total power radiated nS0 (and therefore, proportional to the refractive index),
whereas the non-radiative rate κnr can be estimated from the lifetime in that medium.
Using the values of free space lifetime (τ ′

0 = 4.1 ns) and quantum yield (�′ = 0.95)
measured in aqueous medium from literature [18], we get a quantum yield of � =
0.77 for the obtained lifetimes of Rhodamine 6G in the polymer.

Now that we have the free space parameters of the dye, we can exactly determine
the lifetime of its excited state as a function height for a given orientation (α). One
performs calculations for a parallel and vertical dipole according to the CPS model
(see Sect. 2.4.3) in order to obtain their total radiation power as a function of height
S‖(z) and S⊥(z), respectively. With this, one proceeds by calculating the power
emitted by the dipole oriented at the angle α as a function of height S(α, z), from
Eq. (4.12). Lastly, one uses Eq. (4.13) to calculate the lifetimes τ f (α, z). Figure4.24
show lifetimes plots for Rhodamine 6Gmolecules in a thin polymer film of refractive
index 1.5 on top of a thin gold film (10 nm) with air above for various polar angles
α. These plots act as calibration curves for the axial positions.

4.2.1 Methods

The substrates for MIET experiments were prepared similar to the procedure
described in Sect. 3.2.1. For the experiments in this section, we used an SiO2 spacer
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Fig. 4.21 Setup design for a standard confocal microscope combined with radially polarized exci-
tation

of 20 nm thickness. 10μL of (0.1%w/v) PVA/water solution, without any dye mole-
cules, were spin-coated on top of the substrate at ∼8000 rpm for 60s. Thereafter,
10μL of 0.1 nMRhodamine 6G solutionwas spin-coated on top of the polymer at the
same speed. Themicroscope is described in detail in Sect. 4.1.2 and a simplified setup
design is shown in Fig. 4.21. Briefly, a pulsed white-light laser (Fianium SC400-4-
80), together with a tunable acousto-optic tunable filter (AOTFnC-400.650-TN) was
used for excitation. The excitation wavelength was tuned to 510 nm using the AOTF,
and further filtered with a clean-up filter (FF02-510/10, Semrock). The voltage in
the retarder cell of the mode-converter was set to 1.88V in order to achieve a radi-
ally polarized Laguerre-Gaussian beam. We used excitation powers in the range of
1 − 5 kWcm−2 after the objective. Scans were performed with a pixel size of 50 nm
and a dwell time of 5ms per pixel. The emission was filtered using a band-pass fil-
ter with a maximum transmission around 542 nm (FF01-542/27, Semrock) and then
focused onto a τ -SPAD (PicoQuant, Berlin) for detection. Intensity images were
obtained using custom written Matlab routines using the photons arriving after a
chosen time gate only in order to reject the photoluminescence of the metal film.
The higher signal-to-noise ratio attained in this way contributes to an improvement
in the quality of pattern matching results. The quality of pattern matching is signifi-
cantly affected by the radius of the calculated model patterns, especially for the case
where the intensity patterns are close to each other. For the excitation wavelength
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Fig. 4.22 Left column shows the intensity image with all the photons recorded in the top and
the patterns recognized in the bottom, whereas the right column shows the same for the case of
time-gated photons. The reconstructed image with the patterns for the time-gated analysis has been
enhanced by 1.5× to make the weak patterns more visible. Comparing the bottom figures, 4 more
molecules were recognized and one artifact was removed in the right image after gating the photons.
The scale bar marks a length of 2μm. The plots in the right-top figure shows the intensities in the
pixels corresponding to the same line in raw data with and without time-gating. The signal-to-noise
enhancement was roughly 2 times after the gating

of ∼510 nm using a 1.49 N.A. objective, we modeled the patterns using a radius of
400 nm in object space. This translates to a size of 17 × 17 pixels. Figure4.22 shows
an exemplary intensity image and the patterns recognized, with and without time
gates.

As can be seen in this figure, the chance of recognition for dim intensity patterns
increases with the time-gated correction. The collected photons from the pixels iden-
tified for each molecule were fitted with a mono-exponential model in order to obtain
the excited state lifetimes values.

4.2.2 Results and Discussion

The obtained raw data was processed as described above in the methods section. The
step size for polar and azimuthal angles for calculating themodel patterns was chosen
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Fig. 4.23 MIET calibration curves of a Rhodamine 6G molecule’s lifetime at various heights in a
20 nm thick PVA polymer on top of a layered substrate for its various orientations, the details of the
substrate are described in the methods section above. Also, the distribution of the axial positions of
the molecules together with their orientations is shown along these curves

as 5◦ and then pattern matching was performed in order to obtain the orientations
of each single molecule. Thereafter, MIET calibration curves were calculated for
a dipole oriented at various polar angles in a thin polymer assuming a polymer
thickness of 20 nm, and the height of each single molecule was obtained. Figure4.23
shows the calibration curves as well as the height of the molecules for the fitted
polar angles (0◦, 5◦, . . . , 90◦). The density of the molecules, as can be seen from this
figure, is not uniform over the entire thickness of the polymer film. Also, the number
of molecules for each orientation is not constant, as can be seen from the density
of points on each curve in the figure. Therefore, we plotted the average orientation
as a function of the axial position, shown in Fig. 4.24. The plot shows that close to
the interfaces the dipoles are orientated almost parallel, whereas in the middle, the
dipoles assemble in all possible orientations. The plot also shows an inhomogeneous
distribution of molecules across the polymer.

There are several reasons for observing such a distribution of molecules. First,
since the molecules were introduced following the casting of the polymer film by
spin-coating, one would expect that the concentration of the molecules is low in the
bottom layers of the polymer film.On the other hand, the top of a spin-coated polymer
is not smooth and the height variations can be in the order of ±2 nm. This might
explain the presence of only a few molecules higher than 12 nm. Also, the molecules
close to the gold surface (in the bottom of the polymer) are quenched more than
the molecules at larger distances, making them dimmer. Therefore, one has poor
signal-to-noise ratios for the molecules close to the bottom interface, which makes
it difficult for the pattern matching algorithm to detect, contributing to the overall
distribution that we observe here. Moreover, the relative intensity of a parallel dipole
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Fig. 4.24 The distribution of Rhodamine 6G molecules and their average inclination as a function
of height above the surface

is higher as compared to a vertical dipole in the bottom. This can be seen from
Fig. 4.25 which shows the collection efficiency of parallel and vertical dipoles as a
function of height whichwas calculated by the fraction of the energy propagating into
the collection cone of a 1.49 N.A. objective, using Eq. (2.145). Based on the trend
seen in the curves, the chance of detecting a photon from a vertical dipole is low at
the bottom of the polymer film which can be a contributing reason for the observed
average orientation distribution. Although these might be a few reasons to explain
the distributions seen in the figure, a complete understanding of the distribution and
the orientations of the molecules requires modeling the diffusion and transport of
the dye molecules into the pores of the thin film in the presence of centrifugal forces
which is beyond the scope of this thesis.

There are several limitations for performing smMIET experiments using a radi-
ally polarized laser scanning. Orientation estimation using pattern matching algo-
rithms provides reasonable results only when there are no artifacts such as blink-
ing/bleaching or any overlap of intensity patterns. This limits the selection of dyes
and the conditions of experiments in order to ensure photostability. Since each single
molecule pattern spreads over an area of ∼1 × 1μm, the concentration of fluo-
rophores must be low enough in order to avoid any such overlap. Therefore, this
technique is applicable only for a sparse distribution of labeled entities. The MIET
calibration curves can be calculated, as shown above, for fixed dipole orientations or
for the case where the dye has free rotational freedom and the rotational diffusion
time is shorter than the average fluorescence lifetime so that it can be assumed to
be an isotropic emitter. Combining scanning with radially polarized excitation with
superresolution techniques such as STORM or PALM means that one is limited to
perform scans over a small area in order to achieve a fast frame rate and resolve
multiple molecules fluorescing randomly. However, a major challenge for scanning
an area repeatedly stems from the positioning inaccuracy and the drift one induces
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Fig. 4.25 Total collection efficiency of a parallel and vertical dipole as a function of height above
the SiO2 spacer in a thin polymer film. The values represent the amount of power emitted into the
collection cone of a 1.49 N.A. objective normalized to the total emission power of a dipole in free
space

during scanningwith a piezo stage. A probable solution to this problem is to use galvo
scanning mirrors before the objective or two fast electro-optic deflectors before the
linearly polarized laser is converted into a radially polarized beam. However, this
requires stringent optical alignment whichmight be a limitation for robust and simple
microscopic designs. Therefore, we proceed with our quest for an optimal solution of
combining smMIET with orientation measurements. In the next section we will dis-
cuss the option of defocused imaging which is widely used for determining the three
dimensional orientations of single molecules and comparatively robust and simpler
in instrumentation and alignment than achieving a good quality radially polarized
beam profile using a liquid crystal mode converter as we saw in this section.

4.3 Defocused Imaging

As we saw in the theory chapter, the emission characteristics of a dipole emitter
are dramatically influenced by the presence of a dielectric interface in its vicinity
(see Sect. 2.4.2). In particular, significant changes in the angular distribution of the
radiation are observed. The core idea behind defocused imaging is to acquire this
information by imaging the emission at a defined defocused plane [19]. A blurred,
but characteristic, intensity pattern is recorded which contains all the information to
determine the three dimensional orientation of the fluorescent molecule’s emission
transition dipole moment (pem). In this section, we provide a brief outline of the
theory involved behind these defocused patterns.
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4.3.1 Theory

We start our theoretical considerations from the derivation of the transmitted electric
field of a dipole on a dielectric interface from Sect. 2.4.2. In particular, we refer to
the Weyl representation of the transmitted field (Eq. (2.131))

ET (r) = ik2
0

2π

∫∫
dq
w1

[
ê+
2pTp(ê

+
1p · p) + ês Ts(ês · p)

]
ei[q·(ñ−ñ0)+w1|z0|+w2z]. (4.15)

Herewe use the same sense of orientation and conventions as previously used: The
positive direction of z is downwards into the medium n2, z > 0 below the interface.
The dipole is present inmedium n1 at a position (ñ0, z0), z0 < 0 as shown in Fig. 4.26.
Since only the far-field emission plays a role here, we consider the components with
|q| ≤ n1k1 only, neglecting all imaginary solutions. The electric field for a vertically
oriented dipole (p = pẑ) contains only p-waves. The area element dq can be treated
as dq = qdqdψ = k2w2 sin θ2dθ2dψ. Therefore, the magnitude of the electric field
at an emission angle θ2 per solid angle d� = sin θ2dθ2dψ is given by

E⊥
p (θ2) = ê+

2p E⊥
p (θ2) = −ê+

2p

qw2n2

w1n1
Tpeiw1|z0|. (4.16)

For the case of a parallel dipole, one has both p- and s-waves in the transmitted
electric field. The field not only depends on the angle with respect to the optical axis
θ2, but also changes with the azimuthal angle ψ. We therefore, split up the field into
two components

ê+
2p E‖

p(θ2) cosψ = ê+
2p

w2n2

w1
Tpeiw1|z0| cosψ, (4.17)

and

ês E‖
s (θ2) sinψ = −ês

w2n2

w1
Tseiw1|z0| sinψ. (4.18)

Thus, for every dipole oriented at an angle (β,α) where β is the angle from the
positive x-axis and α, the inclination with respect to the optical axis, the magnitude
of the electric field at direction (θ2,ψ) per solid angle can be written in terms of the
components of a vertical and parallel dipoles.

E(θ2, ψ) = [ê+2p E‖
p(θ2) cos(ψ − β) + ês E‖

s (θ2) sin(ψ − β)
]
sinα + ê+2p E⊥

p (θ2) cosα

(4.19)

Let us now consider the imaging optics of the setup. A geometrical depiction is
provided in Fig. 4.27. A defocusing can be achieved in two ways: (i) By shifting the
objective, and therefore its focal plane, relative to the interface. Remember here that
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Fig. 4.26 A schematic showing the geometry of vectors considered in this section. The dipole
is located at a position (ρ0, z0) with an orientation (β,α). The interface separates the two media
n1 = √

ε1 and n2 = √
ε2 as shown. The unit vectors ê+

i p represent the directions of p-waves, and

ês for s-waves. θ1 and θ2 are the angles the vectors k
+
1 and k+

2 make with respect to the normal of
the interface, and ψ is the angle between the plane of incidence and the x-axis on the interface as
shown

the molecule under consideration is present at a distance |z0| from this interface.
(ii) By placing the detector away from the focal plane. In a wide-field fluorescence
microscope such as that considered inChap.3, these twoways produce the same result
and are completely identical. Here, in this section, we will specifically consider the
case where the detector is shifted from its imaging plane. The mathematics of the
image formation remains, once again, completely identical to the work of Böhmer et
al. [19]. As we saw in Sect. 4.1, the electric field around the optical axis in the image
plane, considering aberration free optics, is described by the integral formula from
Richards and Wolf [4]

E(r′) = − i |k2|
2π

∫∫
�

a(s ′
x , s ′

y)e
ik ′(ŝ′ ·r′) d�′ (4.20)

where the solid angle element is d�′ = ds ′
xds ′

y

s ′
z

, and the integration extends over

the complete angular space � = (θ′
2,ψ); ψ varies from 0 to 2π and θ′

2 from
0 to θ′

max . The relationship between θ2 and θ′
2 is given by Abbe’s sine condi-

tion, n2 sin θ2 = Mn′ sin θ′
2; and therefore, θ

′
max = arcsin(N.A./Mn′), where N.A.

denotes the numerical aperture of the objective and n′ is the refractive index of the
imaging medium, usually air, and M is the magnification of the system. k2 and k′
are the wave vectors of light in the object (in glass) and image space, respectively.
Vector a represents the strength vector right at the ‘focal sphere’, i.e. the sphere with
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center on the imaging plane at the optical axis (see figure). r′ is the coordinate of
the target point in the image plane from the focal sphere, where the electric field is
being calculated. Thus, for a vertical dipole, it is given by Eq. (4.16) and for a parallel
dipole by the sum of both p- and s-fields presented in Eqs. (4.17) and (4.18). The
main idea behind Eq. (4.20) is to present the electric field magnitude in the image
space as a superposition of plane waves. The field magnitude for a vertical dipole at
a plane before or after the focal plane can be expressed, by slightly modifying this
equation as

E⊥(r′) = M
∫ θ′

max

0
dθ′

2 sin θ′
2

∫ 2π

0
dψ

√
n′ cos θ′

2

n2 cos θ2
ê′

p E⊥
p exp(ik

′ŝ′ · r′) (4.21)

and for a parallel dipole

E‖(r′) =

M
∫ θ′

max

0
dθ′

2 sin θ′
2

∫ 2π

0
dψ

√
n′ cos θ′

2

n2 cos θ2
(ê′

p E‖
p cosψ + ês E‖

s sinψ)exp(ik′ ŝ′ · r′)

(4.22)

where

ê′
p = (cosψ cos θ′

2, sinψ cos θ′
2,− sin θ′

2)

ês = (− sinψ, cosψ, 0)

s ′ = (− cosψ sin θ′
2,− sinψ sin θ′

2, cos θ′
2)

and ŝ′ · r′ can be expanded as

ŝ′ · r′ = ŝ′ · (R′ + ′
ρ + z′) = R′ − ρ′ sin θ′

2 cos(ψ − φ′) + z′ cos θ′
2 (4.23)

where R′ is the focal distance in the image space and (ρ′,φ′, z′) are the coordinates
of the target point on the plane in cylindrical coordinates centered at the point of
intersection of the optical axis with the focal plane in image space. Therefore, ρ′
is a vector pointing to the target point from the optical axis, z′ is the distance of
the target point from the focus along the optical axis and φ′ is the angle between ρ′
and êx . The square root factor in Eq. (4.22) together with magnification M ensure
energy conservation [4]. The connection between the coordinates of the position of
the dipole in object space and image space are found using the relations ρ′ = Mρ,
for the distance away from the optical axis and, z′ = M2z along the optical axis.
These relations also state that in order to achieve a defocusing of δz in object space,
one must displace the detector by a distance M2δz in the image space and vice-versa.
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Fig. 4.27 The geometry of the imaging setup. The dipole is situated on the optical axis in a medium
of refractive index n1 at a distance z0 from the interface at z = 0. The medium between the interface
and the focal sphere in the object space has a refractive index n2. The focal sphere in image space
and the image plane are present in a medium of refractive index n′. R is the vector from the focal
point of the objective to a point on the focal sphere in object space, |R| is the focal length of the
objective. It is marked here as the radius of the focal sphere in the object space with center at the
point of the intersection of the interface with the optical axis. Similarly, |R′| represents the focal
length in image space

Similar relations for the amplitude of the magnetic field in the image space can
be found

B⊥(r′) = Mn′
∫ θ′

max

0
dθ′

2 sin θ′
2

∫ 2π

0
dψ

√
n′ cos θ′

2

n2 cos θ2
ês E⊥

p exp(ik
′ŝ′ · r′) (4.24)

and

B‖(r′) = Mn′
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n′ cos θ′
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n2 cos θ2
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× exp(ik′ŝ′ · r′).

(4.25)

The integration over ψ can be performed analytically. The electric field magni-
tude for a dipole oriented at (β,α), writing the electric and magnetic fields as a
combination of parallel and vertical dipoles (see Eq. (4.19)), is given by

{
E j

B j

}
=
∫ θ′

max

0
dθ′

2 sin θ′
2

√
n′ cos θ′

2

n2 cos θ2

{
e j

b j

}
× exp(ik ′ŝ′ · r′) (4.26)

where we used the abbreviations
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Jn are Bessel functions of the first kind of n-th order, with functional argument
k ′ρ′ sin θ′

2 (ρ′ = |ρ′|). The final position dependent intensity in the image plane is
given by the z component of the Poynting vector

S = c

8π
êz · Re{E × B∗}. (4.29)

Note that these equations are written considering a two lens system with magnifi-
cation M . The derivation for a four lens system remains the same except for the fact
that the images will be inverted in the xy-plane. In this case, one should replace φ′
with −φ′ in the final equations for e j and b j . Intensity patterns for a few orientations
of the pem for a four lens system are calculated and shown in Fig. 4.28.

4.3.2 Experimental Setup

A wide-field based imaging setup has been described in detail in Sect. 3.1.2. A total
illumination area of 80μm × 80μm in the object space, an exposure time of ∼3 s
and an average illumination power of 0.2 kWcm−2 gave excellent signal-to-noise
ratio for the defocused intensity patterns of single molecules (see Fig. 3.8). In this
section, wewill describemainly the setup for measuring the defocused patterns using
a focused illumination and a camera that has been displaced from the focal plane in
the image space. The excitation system and sample preparations were described in
Sect. 4.1.2. The fluorescence collected by the objective was recollimated using an
achromatic doublet (AC254-150-A, Thorlabs Inc.) and any backscattered laser was
blocked using a long-pass filter (EdgeBasic BLP01-647R, Semrock). The pinhole,
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Fig. 4.28 Calculated intensity images of a dipole on a camera plane with a defocusing value of
δz = 0.9μm in the object space. The emission wavelength was set to λem = 690 nm The N.A.
of the objective for the calculations was set to 1.49, with a net magnification of M = 200. The
refractive index in image space was set to n′ = 1. The camera pixel size was 13μm × 13μm.
The dipoles were assumed to be on top of an air/glass interface (z0 = 0) and on the optical axis
(n1 = 1; n2 = 1.52). Each pattern spreads over 20 × 20 pixels on the detector. Note that the images
show normalized intensities. From top left to bottom right, α and β values for the calculated dipole
patterns are

Column/row 1 2 3 4 5
α, β α, β α, β α, β α, β

1 90◦, 0◦ 90◦, 45◦ 90◦, 90◦ 90◦, 135◦ 70◦, 0◦
2 70◦, 45◦ 70◦, 90◦ 70◦, 135◦ 70◦, 180◦ 70◦, 225◦
3 70◦, 270◦ 70◦, 315◦ 50◦, 0◦ 50◦, 60◦ 50◦, 120◦
4 50◦, 180◦ 50◦, 240◦ 50◦, 300◦ 30◦, 0◦ 30◦, 90◦
5 30◦, 180◦ 30◦, 270◦ 10◦, 0◦ 0◦, 0◦ −, −
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between the tube lens and the achromatic doublet, was omitted for the sake of align-
ment simplicity. In principle, a pinhole with a diameter of 100–150μm diameter
should not alter the imaging properties of the setup at all, except in contributing to
the blocking of unwanted background arising due to the presence of molecules above
and below the excitation focus if any. In the limit that the emitters are well scattered
in space and separated from each other, the pinhole does not make any significant
difference and just adds to the alignment efforts. After recollimation and filtering, the
emission light was reflected by a custom designed flipping mirror assembly into the
defocused imaging detection system (see Fig. 4.7 for a complete design of the setup).
An additional band-pass filter was inserted in the beam path in order to narrow down
the spectral range of the detected photons (FF01-692/40 Semrock, for Atto 655mole-
cules). Thereafter, the light was focused on an EMCCD camera (iXon DU860-D,
Andor) using a large focal length lens (AC508-1000-A, Thorlabs Inc.) mounted on
an xy-translation mount (LM2XY, Thorlabs Inc.). The net magnification of the setup
was M = 400 which, taking into account the pixel size of the camera (24 × 24μm),
results in an area of 60 × 60 nm per pixel in the object space. In order to achieve
a defocused image plane, the camera was mounted on a stage which was placed in
between two rails, facilitating the change of position by sliding (see Fig. 4.29). For a
defocusing of −0.9μm in object space (δz = 0.9μm), the camera was shifted by a
distance of 14.5 cm (M2δz) towards the lens from the imaging focal plane. The focal
plane in image space was located by focusing the laser on the air/glass interface of an
empty coverslip, imaging the back-reflected light onto the camera chip without any
filters (or with a neutral-density filter if the back-reflected intensity was too high),
and sliding the camera along the rails such that the image shows a Gaussian spot with
the narrowest width (Note that due to the high magnification and the M2 relationship
between the axial distances in the image space and object space, an error of 1mm
translates to ±6.25 nm in object space, which is negligible compared to the size of
the excitation volume). Depending on the brightness and stability of the molecules,
the laser power and exposure time were adjusted. For example an excitation power
of 0.5 kWcm−2 was used together with an exposure of 5 s for Atto 655 molecules at
glass/air interface.

4.3.3 Pattern Matching and Lateral Localization

A brief introduction to superresolution techniques based on point spread function
(PSF) fitting was given earlier (see chapter 1, Eq.1.1). One can achieve arbitrarily
high lateral localization precision by increasing the number of photons from the
emitter, assuming that the single molecules are perfect isotropic emitters (see the
references in the introduction of the article [20] for further details). A 2D Gaussian
PSF model is used for localizing spatially well-separated single-molecule intensity
patterns [21]. However, this assumption is violated when it comes to samples where
the rotation freedom of the dye molecules is restricted. Anisotropic intensity distri-
butions arise on the imaging plane due to the anisotropic emission patterns of these
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dipoles (see also Sect. 2.4.2). An error, as high as 10 nm is introduced in the esti-
mation of position while detecting immobilized molecules in the focus of high N.A.
objectives [20].

The problem gets much more severe when the dipole emitters are situated above
or below the objective’s focal plane, and when they are close to a dielectric interface.
This leads to severe localization errors [22]. The Poynting vector for the field on the
image plane can be written as [23]

S(x, y)|β,α ∝ I‖{p‖(ρ′) + �p‖(ρ′) cos(2φ′ − 2β)} sin2 α

+ I× p×(ρ′) sinα cosα cos(φ′ − β) + I⊥ p⊥(ρ′) cos2 α

(4.30)

where ρ′ has the same meaning as in the theory section and now x ′ = ρ′ cosφ′
and y′ = ρ′ sin φ′. The integral in Eq. (4.26) goes from 0 to θ′

max, where θ′
max =

arcsin(N.A./Mn′) ≈ N.A.
Mn′ is a very small number. This allows one to simplify these

integrals greatly by using cumulant approximations for Bessel functions Jn for n =
1, 2, 3 (see supplementary information of [23] for example).

The functions p‖ and p⊥ here represent the intensity of an isotropic distribution
of parallel and a fixed perpendicular dipole, respectively, whereas �p‖ marks the
anisotropy connectedwith the radial part of the intensity distributionof afixedparallel
dipole and the cosine function involving β, its angular anisotropy. The presence of
cos 2(φ′ − β) in the equation indicates the presence of two 2-fold symmetries in
the patterns, connected with the contribution from a parallel dipole. The cross term
p× and its pre-factor dictate the anisotropy connected with the radial and angular
component of the intensity distribution for a dipole with orientation in between these
two extreme cases. The remaining functions I‖, I⊥ and I× are normalization terms
for the p terms in the equation. Figure4.30 shows the projection of the angular
distribution of fixed dipoles at various orientations directly below their locations.
The intensity distribution of a parallel dipole shows two 2-fold symmetry planes,

Fig. 4.29 The setup used for defocused imaging
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one along the dipole’s direction, and another perpendicular to it. The symmetry
along this axis (β = 0) is present for all orientations, as can be seen from the same
figure. This is in agreement with the cosine function in the cross term which is
even for angles centered around φ′ = β. The intensity pattern for a vertical dipole is
completely symmetric around the optical axis (C∞v), since now, both the cross term,
as well as the term for a parallel dipole, are zero.

In the projections shown in the figure, one can clearly observe the dramatic shift
of the centroid (center-of-intensity) for orientations that are in-between a parallel
and a vertical dipole. We simulated the intensity patterns by fixing β = 0 (along the
x-axis), and systematically varying the out-of-plane angle α by 5◦ for a dipole fixed
in a medium with refractive index of water (n1 = 1.33) placed 0.3μm away from a
glass coverslip n2 = 1.52 (z0 = −0.3μm). We chose a pixel size of 80 nm in object
space, a wavelength of 680 nm, an N.A. of 1.49, and varied the focus position of the
objective from the glass/water interface up to 1μm deep with a step of 50 nm. For
each focus position, we calculated raw images with a total of 104 photons for the
pattern with Poisson statistics. We then fitted the patterns with the standard weighted
least-square-error minimization routine for a 2D Gaussian model and compared the
localized centroid of the pattern with its true position as was describe in Sect. 4.1.4.

Fig. 4.30 Sectioned radial distribution of dipoles situated on the optical axis into the lower half-
space oriented at various polar angles. The patterns below show the intensity distribution on a
defocused imaging plane. Notice the shifted center-of-intensity in these patterns with respect to
the optical axis. Also note the inversion of the intensity distribution with respect to the radial
distribution. This is only true for a wide-field based defocused imaging



126 4 Single-Molecule Transition Dipole Imaging

Several raw images were simulated for each angle and defocusing value in order
to achieve reliable statistics. The same was repeated for detection with a 1.2 N.A.
objective. The results are summarized in Fig. 4.31. As expected, severe localization
errors were observed for high defocusing values. At a focus position of 0.7μm, these
errors were as high as 200 nm. The change of sign with the increase in defocusing
value indicates the shift of the centroid along the direction of the projection of the
dipole in the xy- plane (in this case, along the x-axis). This can be visualized from
the patterns shown in Fig. 4.32.

Another important observation fromFig. 4.31 is that even in the plane of the dipole
(z = 0.3μm), one has a non-zero localization error for an orientation in between a
parallel and perpendicular direction. This is in total agreement with the work of
Enderlein et al. [20]. Figure4.33 shows the error as a function of orientation. The
1.49 N.A. objective collects more efficiently the fluorescence photons emitted at
super-critical angles from a dipole close to the glass interface. This leads to highly

Fig. 4.31 The Left figure shows the localization error for various polar angles α and defocusing
values for a 1.2 N.A. objective, and the right figure for N.A. = 1.49. The position of the dipole is
fixed at 0.3μm above the interface

Fig. 4.32 From left to right, calculated intensity patterns for a dipole with orientation (40◦, 0◦) at
different focus positions with respect to the dipole itself. The position of the focus with respect to
the dipole’s plane is indicated below in μm. Positive values indicate that the focal plane is above
the dipole’s position. The red dots in each frame mark the position of the dipole. One can clearly
see the shift of the centroid along the x-axis when the focal plane moves. The pixel size is 80 nm
in object space. The top row shows the patterns for N.A. = 1.49, whereas for the bottom row, N.A.
= 1.2
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Fig. 4.33 Left panel shows the calculated intensity patterns of dipoles oriented at angles α =
0◦, 5◦, 10◦, . . . , 90◦ (from left top to right bottom) as would be seen if present in the focus of a 1.49
N.A. objective. One can clearly see the shifted centroid in the images with orientations between
40◦ to 60◦ where the asymmetry is prominent. The right graph shows the localization error as a
function of orientation for the two objectives chosen for study here

anisotropic patterns from dipoles oriented even at angles as small as 10◦ from the
xy-plane or the optical axis.

If one knows the defocusing value and the 3D orientation of the emission dipole,
the shift in the intensity centroid can be taken into account and corrected for. How-
ever, when the defocusing values are large (>0.4μm) one observes intensity patterns
(with a high N.A. objective), such as shown in Fig. 4.32, which can be recognized
with a pattern matching algorithm. Figure4.34 shows an exemplary wide-field image
showing defocused patterns of Atto 655 molecules at a glass/air interface. Each pat-
tern spreads over 40 × 40 pixels on the camera. Patterns were calculated according
to the model developed in the theory section for various angles. This was done by
individually varying the azimuthal and the polar angles (β,α) in Eq.4.26 and there-
after, calculating the position dependent Poynting vector to get the spatial intensity
patterns. By performing a pattern matching using a least-square-error minimization
algorithm as described in Sect. 4.1.4, one estimates not only the 3D orientation of the
pem, but also the lateral position of the emitter. The right image in Fig. 4.34 shows
the reconstructed image based on the identified pattern and the corresponding coor-
dinates of the center. The precision of the lateral position one obtains using such a
pattern matching algorithm is equal to one pixel in object space, since the errors are
calculated by shifting the patterns pixel by pixel. Also, since the model patterns were
calculated by varying the in-plane and out-of-plane angles (β,α) by a finite value
(10◦ in the figure shown below), the precision of the orientations is limited by this
value.

In order to overcome these limitations, one can either upsample the image to a
finer pixel grid and choose a smaller step variation of the two angles for pattern calcu-
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Fig. 4.34 Left figure shows an image showing widefield defocused intensity patterns of Atto 655
molecules spin-coated on a glass surface. The camera pixel size was 8 × 8μm. The images were
taken with a high N.A. objective (N.A.= 1.49, 100× TIRF, Olympus). The net magnification of the
imaging setupwas 160, thus giving an effective pixel size of 50nm in object space. The exposure time
was set to 3 s. The right image shows thematched patterns using the least-square-error minimization
algorithm. The cyan dots in the center show the localized position of the dipoles obtained from the
pattern matching algorithm

lations, which makes it computationally expensive; or use the preliminary results as
initial guesses for further refining the parameters, for each individual pattern, using
a simplex or conjugate gradient based optimization algorithm. The optimization
can be accomplished using a least-square-error function or a maximum likelihood
estimator [23] with position, orientation angles, brightness and background as fit
parameters. With such an analysis, one can achieve sub-pixel lateral localization
precision and higher precision for determining the 3D orientations. We describe this
method in detail in the forthcoming sections.

4.3.4 Multidimensional Emitters

Earlier we mentioned a few exceptions for emitters which show a single dipole
based excitation transition such as defect centers in diamonds and quantum dots.
Similarly, not all emitters exhibit single dipole transition geometries in their emission.
Symmetric quantum dots, for example, show a degenerate transition dipole isotropic
in a plane (“bright plane”), perpendicular to a “dark axis”, along which they do not
emit. However, any elongation or asymmetry in the shape of the crystal results in an
emission along this “dark axis” [24, 25]. Thus, the intensity in the image space can
be expressed as a superposition of three linear dipoles mutually orthogonal to each
other with differing contributions [26]. For an orientation (β,α) of the “dark axis”,
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Fig. 4.35 Calculated emission intensity patterns of a defocused symmetric quantum dot (κ =
0, η = 0) with the “bright plane” oriented at various angles. The calculations were done for a
defocus value δz = 1.2μm, air as a medium above the quantum dots, imaged with a high N.A.
(N.A. = 1.49) objective, at wavelength λem = 590 nm. A pixel size of 65 × 65 nm was assumed
in object space. The out-of-plane (α) and in-plane β orientations of the “dark axis” are

Column/row 1 2 3 4 5
α, β α, β α, β α, β α, β

1 90◦, 0◦ 90◦, 60◦ 90◦, 120◦ 75◦, 0◦ 75◦, 60◦
2 75◦, 120◦ 75◦, 180◦ 75◦, 240◦ 75◦, 300◦ 60◦, 0◦
3 60◦, 72◦ 60◦, 144◦ 60◦, 216◦ 60◦, 288◦ 45◦, 0◦
4 45◦, 90◦ 45◦, 180◦ 45◦, 270◦ 30◦, 0◦ 30◦, 120◦
5 30◦, 240◦ 15◦, 0◦ 15◦, 180◦ 0◦, 0◦ −, −

two dipoles I1 and I2 perpendicular to each other on the plane perpendicular to this
vector can be visualized. The total intensity can then be written as

Itotal = κIβ,α + (1 − κ)

[
1 + η

2
I1 + 1 − η

2
I2

]
(4.31)

whereκ and η define the intensity ratios for the three dipoles. For perfectly symmetric
semiconductor crystals, κ ≈ 0 and η ≈ 0. Figure4.35 shows calculated patterns for
a few orientations of the “dark axis” for such a nanocrystal and Fig. 4.36 shows a
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Fig. 4.36 Captured emission patterns of a few quantum dots (CdSe/ZnS, PlasmaChem) with a 1.49
N.A. objective, at a defocusing value of δz ≈ 1.2μm and emission wavelength λem = 590 nm. The
effective pixel size was 65 × 65 nm

Fig. 4.37 A molecule in its ground state (S0, v0) with structure 1 undergoes an excitation, when
a vertical transition to a higher vibrational state vp, p �= 0 in the excited state S1 takes place. The
molecule in this state (S1, vp) has the same structure 1, which is unstable (therefore marked as
an asterisk (∗) sign in the figure). Immediate vibrational relaxation of the molecule takes place
leading it to a structure 2. The molecule now populates the state (S1, v0) which can be seen as a
metastable state, where it stays for a time τ f (average lifetime) before proceeding with a radiative
or a non-radiative de-excitation process. A radiative emission is another vertical transition from
the zero vibrational state of the excited state S1, v0 to a higher vibrational state in the ground state
(S0, vq ), q �= 0. Again, the structure of the molecule in this state is the same, and it undergoes rapid
vibrational relaxation to the initial ground state structure 1

few measured intensity patterns for quantum dots. In the case when κ = 1, one has
a linear dipole transition moment, which leads to patterns identical to organic dye
molecules such as those shown in Fig. 4.28.
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4.4 Excitation-Emission Transition Dipole Imaging

So far we saw that intensity patterns produced by scanning with a radially polarized
laser beam reveal the excitation transition probability of the emitter, whereas the
intensity patterns recorded on a defocused image plane yield information regarding
the emission transition probability, specifically, their dimensionality and orienta-
tion. We discussed briefly the origin of the dipole behavior in transition processes
in our theory Sect. 2.1.1. We saw that the complete absorption spectrum of a poly-
atomic chromophore contains all possible transitions, each associated with two of
its molecular orbitals. The change of electron density over the structure of the mole-
cule, associated with an individual transition dictates the orientation of the transition
dipole moment with respect to the molecule’s structure. In our theoretical outline,
we also introduced briefly the Franck-Condon principle for transitions between two
electronic states. According to this principle, the positions of the nuclei remain fixed
during the process of excitation and emission, which leads to the so-called verti-
cal transitions from the vibrational ground state of the electronic ground state to
one of the overlapping vibrational excited state in the electronic excited state and
vice versa (see Fig. 4.37). Each vibrational state, which corresponds to a different
set of expectation values for the mean position of all the atoms in the molecule,
has a unique electron density distribution. However, what remains constant in every
electronic state, is the number of nodes (or planes across which the wavefunction
changes sign) in the overall electron density. The number of nodes is higher for higher
electronic states due to which the equilibrium position of the effected nuclei, and
therefore the corresponding potential energy curve, shifts towards higher inter-atomic
distances. The transition probabilities between a vibrational state of the electronic
ground state and any vibrational state of the electronic excited state, are given by the
overlap integral of the wave functions of the vibrational states involved, which are
known as the Franck-Condon factors (see Eq. (2.10)). These factors are the heart of
electron-phonon coupling. Following the electronic transition, which usually takes
the molecule to a higher vibrational state, a non-radiative vibrational relaxation, and
a resultant structural readjustment of the molecule takes place. The total reorganiza-
tion energy for the full excitation-emission cycle, the measure of the so-called Stokes
shift, is thus directly related to this structural readjustment.

The important point in thewhole discussion above, which should be highlighted in
the context of the experiments and results that follow, is that during each vibrational
relaxation process accompanying an electronic transition, the electron density over
the complete molecule’s framework is modified, before the next electronic transition
occurs. In simpler words, the net transition dipole of excitation (pexc) is usually not
the same as the transition dipole of emission process (pem). For examples corrob-
orating this argument, see references [27–30]. Ultrafast spectroscopy which yields
time resolved fluorescence absorption and fluorescence spectra with a resolution of
few femtoseconds, such as in the work shown in [30], is used to monitor and study
such structural relaxation processes accompanying an electronic transition. Our aim
in this section is to show the first experimental results for the simultaneous deter-
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mination of the three-dimensional orientations of both, pexc as well as pem, of each
individual fluorescent emitters immobilized on a substrate in a polymer.

4.4.1 Experimental Setup and Methods

Figure4.38 shows a schematic representation of the optical setup used here. A pulsed
white light laser (Fianium SC400-4-80) together with an acousto-optic tunable fil-
ter (AOTFnC-400.650-TN) was used for excitation (λexc = 640 nm). The linearly
polarized TEM00 beam was then passed through a pixelated liquid crystal mode
converter (Arcoptix S.A.) which rotates the light polarization spatially to generate a
radially polarized TM01 beam. This beam was then focused on the surface of a sam-
ple through a high N.A. objective lens (APON 60X OTIRF, N.A. = 1.49, Olympus)
after reflecting on a 30 R : 70 T non-polarizing beam splitter (ThorLabs BS019). The
sample was prepared by spin-coating 10μL of 1 nM Atto 655 (AttoTech, GmbH)
dye solution on top of a cleaned glass (nref = 1.52) coverslip and then scanned using
a piezoelectric stage with a pixel size of 50 nm. Collected photons were focused onto
the active area of a single-photon avalanche photodiode (τ -SPAD, PicoQuant) and
counted with a multichannel picosecond event timer (HydraHarp 400, PicoQuant).
The backscattered excitation light was blocked using a long pass filter (BLP01-635R,
Semrock BrightLine) and additional band pass filters (Semrock BrightLine FF01-
692/40). The laser power, ∼4kW/cm2, and the sample scanning rate, 3ms per pixel
were chosen optimally so as to minimize photobleaching of the dye molecules and
achieve a reasonable signal-to-noise ratio in the excitation images. Thereafter, the
piezo stage was parked on each molecule’s position, identified from the scan image,
and the fluorescence collected was guided with the help of a replaceable mirror onto
an EMCCD camera (iXon DU860-D, Andor Technology). For the chosen magnifi-
cation, the pixel size of the camera corresponds to 60 × 60 nm area in the object
space. The camera was shifted from the image plane by about δz = 0.9μm above
the focal plane in the object space. Each image was acquired with an exposure of 9 s,
an electron multiplying gain of 100, and with the excitation power of ∼10kW/cm2.
All the data collection and hardware synchronization was performed on a custom
written LabVIEW platform.

As a second system, we investigated molecules of the dye Alexa 488 (Invitrogen)
embedded into a thin layer of polymer by spin-coating a 0.1%w/v PVA/water (refrac-
tive index 1.55) solution containing 1nM of the dye on top of a cleaned coverslip at
6000 rpm for 60s, yielding a distribution of immobilized single molecules within a
thin polymer film. The sample was excited with an excitation power of 1.6 kW/cm2

at 485nm and a dwell time per pixel same as the previous measurements. As before,
backscattered excitation light was blocked using suitable long (BLP01-488R, Sem-
rock) and band pass (FF02-525/40, Semrock) filters. The defocused images were
obtained at the same excitation power but with the camera set to a position such that
the effective defocusing at the object space δz was around 0.6μm, and the acquisition
time was now 15s.
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Fig. 4.38 Experimental setup showing the path of the excitation beam in yellow and thefluorescence
emission pathways as red. The collimated (TEM00) pulsed laser is passed through a linear polarizer
(LP). Any unwanted wavelengths present were blocked using a clean up filter (CL) before the
beam was passed through the mode converter. Thereafter, the beam was mode cleaned by focusing
through a pinhole (PH) leading to a doughnut profile radially polarized laser. The beamsplitter (BS)
reflects the laser into the objective which focuses the light onto the sample. The inset shows the
calculated longitudinal and the transverse electric field components on the surface of the substrate
0.5μm around the optical axis (scalebar = 200 nm) The sample is scanned first by focusing the
photons onto a single photon avalanche photodetector (SPAD), to obtain the excitation image and
the positions of the emitters. Later, a replaceable mirror is placed to reflect the emission photons
onto an EMCCD camera shifted from the imaging plane, and a defocused image at each position is
captured. [This figure has been published in the article [31]]

4.4.2 Results

4.4.2.1 Measurements on Single Molecules

The first row in Fig. 4.39 shows 5 out of 131 excitation patterns of the Atto 655 mole-
cules acquired during the scans. The peak count rates observed for these molecules
range between 17 to 30kHz in the focus of excitation and the total number of pho-
tons collected between 1 × 103 to 4.5 × 103. We estimated the excited-state decay
lifetime (τ f ) for each molecule individually after pattern matching. The τ f values
show a distribution peaked around 2.84 ns. The third row in Fig. 4.39 shows the
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Fig. 4.39 Emission and excitation patterns of five Atto 655 molecules. The top row shows the
excitation images, the second row the corresponding fitted patterns, the third row shows the defo-
cused images, and the fourth row the fitted emission patterns. The scan pixel size is 50 nm and each
excitation image is 25 × 25 pixels; whereas the camera pixel size is ∼60nm with each defocused
image spanning over 40 × 40 pixels. The last row is a depiction of both the excitation (red) and
emission (blue) dipole orientations, as fitted from themeasurements. Theα and the β values indicate
the orientation with respect to the z- and x-axes, shown for the first molecule. [This figure has been
published in the article [31]] The fitted orientation angles for both dipoles are

Molecule # βexc αexc βem αem

1 61.2◦ 83.2◦ 86.6◦ 76.4◦
2 101.6◦ 89.2◦ 288.8◦ 87.9◦
3 124.5◦ 83.1◦ 315.9◦ 87◦
4 356.9◦ 88.6◦ 162.7◦ 83.8◦
5 87.5◦ 7.92◦ 82.2◦ 88.1◦
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defocused images corresponding to the excitation patterns shown in the first row.We
estimated the number of photons in each pixel by converting the counts into photon
numbers, taking into account the electron-multiplying gain used and the sensitivity
of the camera. This was done by first subtracting the camera bias from the recorded
camera counts, multiplying the resultant with the sensitivity (average number of pho-
tons required to produce one count, which depends on the pre-amp setting and the
read-out rate), and finally dividing it by the electron gain used. The total number of
photons detected per molecule determined in this way range between 1.6 × 105 to
1.2 × 106.

For data evaluation, we first performed the least-squares minimization pattern
matching that we described in Sect. 4.1.4 for both excitation and emission inten-
sity patterns. The obtained fit parameters served as the initial guess values for the
optimization of a log-likelihood function assuming Poissonian statistics [23]

L = −
∑
r

[
I (r) · log(A · P(r|rP , β,α) + B) − (A · P(r|rP , β,α) + B)

]
(4.32)

which yields refined parameters beyond the discrete set of values recovered by the
pattern matching. Here, I (r) denotes the measured image and P(r|rP ,β,α) is the
pattern calculated using the wave-optical model described in Sect. 4.3. The optimiza-
tion was done for the parameters rP ,β,α, A, B, where rP is the pattern’s central
location, A is the integrated intensity, and B the background intensity value. The
optimization algorithm was based on a conjugate gradient method. Refinement of
the fit using the log-likelihood function increases the fit accuracy by five to ten-fold.
(see Fig. 4.40) Theoretically, one could use, for the pattern matching, a set of pat-
terns with a ten-fold finer angular spacing of α- and β-values, which would make
the log likelihood-based refinement obsolete. However, such an approach would be
computationally prohibitive.

The second and fourth rows of Fig. 4.39 show the fitted excitation and emission
patterns for five Atto 655molecules. In order to estimate the fitting errors, we applied
a bootstrap algorithm where new noisy samples were generated based on the esti-
mated parameters, and then fitted again. In this way, a distribution for each parameter
was obtained using the above maximum likelihood estimator by fitting one thousand
re-sampled images. The α-values for almost all molecules were close to 90◦, which
indicates that the spin-coated molecules were lying mostly flat on the substrate con-
sistent with what we saw in our previous work in Sect. 3.2.2. The standard errors of
α and β for the orientation of pexc were both smaller than 2◦, whereas for the orien-
tation of pem, they were both smaller than 0.4◦. These small values of the standard
deviations for the obtained angles are due to the high number of total detected pho-
tons per molecule. Figure4.41 shows the result of bootstrapping for the estimation
of the orientations of both the TDMs of a molecule. Further, the small values of the
standard deviations for the angles obtained using the bootstrap method described
above establishes the accuracy of the fitting method for the model intensity patterns
calculated with the number of photons and the background values estimated from the
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Fig. 4.40 The left column shows the raw data cropped from scan images acquired using a radially
polarized laser for three molecules. The right column shows the patterns identified using the least-
squares minimization pattern match algorithm; whereas the middle column shows the refinement
of the parameters using the described maximum likelihood estimation (MLE)

Molecule # MLE (β,α) Pattern match (β,α)
1 (340.0◦, 80.3◦) (339◦, 75◦)
2 (118.8◦, 83.2◦) (115◦, 90◦)
3 (176.3◦, 88.3◦) (175◦, 90◦)

fitting itself. The quality of the defocused images is sensitive to small obstructions
or any undesired tilt present in the emission pathways, which are hard to rectify in
a custom built setup that lead to slightly asymmetric defocused images. This does
not, however, affect the estimation of the in-plane angles β, but introduces small
systematic errors in the estimation of the out-of-plane angles α of the pem, affecting
slightly the accuracy of the fitted results.

The total number of photons collected from the Alexa 488 molecules ranged
between 2 × 104 and 1.5 × 105 on the defocused camera, and between 0.7 × 103

and 3.4 × 103 in the excitation images. Now, the determined α-values showed a
broad distribution between 0◦ and 90◦ indicating that the molecules immobilized
within the polymer layer did not have a preferred orientation parallel to the surface,
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Fig. 4.41 Bootstrap results showing the distribution of the orientations for an Atto 655 molecule.
The number of photons collected during the scanning was ∼3.2 × 103 whereas ∼2.4 × 105 on the
defocused camera for the emission pattern. The standard deviations of β and α from the bootstrap
data of the excitation pattern are 1.6◦ and 1.5◦; whereas for the emission pattern they are 0.5◦ and
0.4◦

in contrast to theAtto 655 sample. The standard errors ofα andβ forpexc were around
5◦, whereas for pem they were around 1◦. The difference in precision between the
Atto 655 and the Alexa 488 measurements can be explained by (i) the fewer number
of total photons that were collected from the Alexa 488 dye molecules; and (ii) the
smaller defocusing value chosen in order to achieve a good signal-to-noise ratio,
which affects the accuracy of estimating the α and β values, in particular, for dipoles
oriented almost vertically.

After obtaining the orientations of both pexc and pem, it is now straightforward
to estimate the inclination angle γ between excitation and emission dipoles for each
molecule. Figure4.42 shows the distribution ofγ for 25measuredAtto 655molecules
and for 49 Alexa 488 molecules. The values for γ vary between 7◦ and 33◦ with a
mean of ∼15◦ for Atto 655 molecules, whereas a larger mean value of ∼23◦ and
broader distribution for theAlexa 488molecules. This shows that there is a significant
variation of the transition dipoles during the excitation and emission processes for
both the species.



138 4 Single-Molecule Transition Dipole Imaging

Fig. 4.42 Distributions of determined γ values (left) and their corresponding distribution (right)
for 25 molecules Atto 655 molecules on a glass surface (blue), and for 49 Alexa 488 molecules
embedded into a polymer film (red). The error bars shown in the left figure were estimating using
a bootstrapping algorithm. The right side shows the probability distributions with a bin width of
5◦. The distributions were fitted with a Poisson distribution (solid lines) yielding a mean value of γ
equal to 14.6◦ for Atto 655 and equal to 22.5◦ for Alexa 488. The results for the first five molecules
of Atto 655 correspond to the the five measurements shown in Fig. 4.39 and listed in table beneath.
[This figure has been published in the article [31].]

4.4.2.2 Ensemble Anisotropy Measurements

In order to compare the obtained values with an ensemble estimate for the γ values,
we performed time-resolved anisotropy measurements on ∼1μM in 90% glycerol
solutions of the two dyes. The anisotropy measurements were performed by focus-
ing two orthogonally polarized lasers of the same excitation wavelength through
a low numerical aperture (UPlanSApo 20×, N.A. = 0.75, Olympus) air objective.
A low N.A. objective is essential for such measurements in order to reduce the
depolarization of the excitation laser in the focus. For the excitation of Atto 655
molecules, we used two 640nm diode lasers (LDH-D-C-640, PicoQuant) with a
pulse width of 100 ps, pulsed alternatively with a repetition rate of 40MHz each
with the help of a multichannel picosecond diode laser driver (PDL 828 ‘Sepia II’,
PicoQuant). This gives a time delay of 12.5ns between the two alternate polarization
pulses in the focus. Clean-up filters (Z640/10X, Chroma Technology) were used to
block any unwanted wavelength from the lasers. The power of each laser was set to
0.1 kW/cm2. The high concentration ensured the presence of all possible orientations
of the excitation and emission transition dipoles. The emission collected through the
same objective was focused onto a 50μm pinhole and thereafter split and refocused
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onto the active area (180μm) of two Single Photon Counting Modules (SPCM CD,
Excelitas Technologies Inc., timing resolution 350 ps) by a polarizing beamsplitter
cube. The emission light was filtered from any background or scattering by passing
through band-pass filters (BrightLine HC 692/40, Semrock) in front of the detectors.
The detected photons were recorded with 8 ps time resolution by a multichannel
picosecond event timer and TCSPC module (HydraHarp 400, PicoQuant). In such
an experimental setup, each detector measures two consecutive fluorescence decay
curves within one complete excitation cycle, one corresponding to the laser which
is parallel in polarization to the detector (higher amplitude) and the other which is
orthogonal to it (lower amplitude). The four TCSPC curves thus recorded can be
named as I‖,‖,I‖,⊥, I⊥,‖, I⊥,⊥ where the first symbol represents the polarization of
the laser with respect to a fixed ‖ and ⊥ orientation in the laboratory reference frame
and the second symbol marks the orientation for the detection. The time resolved
anisotropy r(τ ) is calculated from the following equation

r(τ ) =
√

I‖,‖(τ ) × I⊥,⊥(τ ) −√I‖,⊥(τ ) × I⊥,‖(τ )√
I‖,‖(τ ) × I⊥,⊥(τ ) + 2

√
I‖,⊥(τ ) × I⊥,‖(τ )

(4.33)

where τ is the time delay between the laser pulse and tcspc channel. Here, τ is deter-
mined separately for each TCSPC curve. The time channel corresponding to roughly
half the maximum counts on the rising edge of the TCSPC curve was identified as
〈τ0〉. An exponential tail fitting is performed on r(τ ) and the rotational diffusion D
of the dye molecules is obtained. Thereafter, the r0 for Atto 655 was obtained by
extrapolating the fitted curve to time τ0. This corresponds to the ensemble average of
the angle between the excitation and the emission dipoles 〈γ〉 values, which is given
by (see also reference [32])

〈γ〉 = cos−1

√
5r0 + 1

3
, 0 � γ � π

2
(4.34)

Similarly, the measurements for Alexa 488 were performed using two orthogonally
polarized 485 nm (LDH-P-C-485B) lasers, appropriate clean-up filters (F49-488,
AHF) before them, and band-pass filters (FF01-525/30) in the detection.

We obtained r0 = 0.361 and 0.33 for the Atto 655 and Alexa 488 measurements,
which correspond to 〈γ〉 values of 14.9◦ and 19.9◦ respectively using Eq.4.34. These
are values are in good agreement to the mean values obtained from the single-
molecule data presented in Sect. 4.4.2.1.
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4.4.3 Discussion and Outlook

An important message that is conveyed from these measurements is that significant
reorganization in the structure of themolecules after the excitation occurswhich leads
to an overall change in the electron density over the structures before the emission
occurs. This manifests as a non-negligible 〈γ〉. One can model the electron density
maps of the molecule’s structure in the excited and ground vibrational states in the
HOMO and LUMO electronic states, similar to the calculations shown in [27], in
order to compare the obtained values with the theoretical calculations (beyond the
scope of this thesis). It is beyond the scope of our work to account for the wide
variations in γ that we observe for individual molecules. We, however, speculate that
the bending of the molecule’s backbone structure, depending on the extent of local
electrostatic and van der Waals interactions with the substrate can be a key reason.
Correlating the values of γ together with the binding force with the interface, mea-
sured using single-molecule force sensitive techniques might be useful to investigate
the local surface effects [33].

The method we present here can be extended to the imaging of magnetic dipoles,
electric multipoles, and quantum dots, and probe their behavior in different electro-
magnetic environments. Quantum dots, as we saw in the previous section, have a
2D degenerate emission transition dipole located in a plane perpendicular to their
crystalline c-axis [27]. Theoretical calculations and a few experimental results show
that when placed close to metallic nanostructures or optical antennas, the degeneracy
is lifted off and they show polarized emission properties similar to a dipole [13, 28].
A complete behavior of the transitions properties can only be studied by monitoring
both, the excitation and emission transition dipoles simultaneously.

One can try various combinations of methods that determine the excitation and
emission transition dipoles of molecules, such as, the combination of radially polar-
ized excitation scanning together with a detection scheme as was employed in work
of Hohlbein et al. by splitting the emitted photons onto three single photon counting
detectors is much suited for rapidly measuring the orientations of both transitions
dipoles of single molecules [34]. By comparing the intensity ratios on the detectors,
one can determine, using simple relations, the in-plane and out-of-plane orienta-
tions for the emission transition dipole of a single chromophore. In this way, one
has all the information, including the fluorescence lifetime of each molecule, just
while acquiring a scan image. In comparison to the method we adopted for the study
above, this method is faster (up to an order of magnitude) and can achieve a higher
throughput, since one need not collect a high number of photons for the emission as
we require. However, the significant advantage of using defocused imaging for the
determination of the emission transition probabilities, over most existing techniques,
is its ability to distinguish between a single dipole emitter and a multidimensional
or isotropic emitter. The structural details of the emission from exotic emitters, such
as quantum dots for example, can be resolved and investigated easily by using this
method. By introducing a beamsplitter in place of a mirror, such that only 70% of the
light is used for defocused imaging, the remaining fraction of the detected photons
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can be used used for fluorescence lifetime estimation, for studying the photophysics
of the emitter, and even photon antibunching studies if the emission center is stable
enough. This information can be highly useful when studying the photoluminescence
properties of such exotic emitters.

Together with the orientation information, one obtains the lateral position of an
emitter in the object space. Due to the high number of photons collected on the
camera, the precision of position determination, or localization precision, can go
down to a few nanometers. From the bootstrapping results of the data presented
above, we achieve 2 to 3 nm lateral localization precision indeed. This means, if
combined with smMIET technique, one has all the information, i.e. fluorescence
lifetimes, emission transition dipole orientations for obtaining the axial distances,
and defocused intensity patterns to localize the molecules laterally. Thereby, one
can localize individual emitters in all three dimensions, with nanometer precision. It
must again be pointed out here that the lateral position obtained from such an analysis
already takes into account the asymmetric angular emission distribution from a fixed
dipole, and therefore, is free of any orientation artifacts.

4.5 Transition Dipole Imaging of Carbon Nanodots

Carbon Nanodots (CNDs) are fluorescent carbon nanoparticles which have recently
attracted enormous attention due to their bright photoluminescence (PL), solubility
in water, low toxicity, easy functionalization, chemical inertness and one-step prepa-
ration [35–37]. In order to fully understand the origin of their PL, we investigated the
dimensionality of their transition dipole moments (pexc and pem). Depending on the
origin of the PL, the dimensionality of the TDM changes [38, 39] from one dimen-
sional dipole for single chromophores for example, to an isotropic distribution of
emission probability in a highly symmetric emitter such as silicon nanocrystals [40].
Molecules such as benzene and crystal violet show two-dimensional degenerate
TDMs due to their symmetrical planar structures [41].

The synthesis of carbon dots is given in detail in the supplementary information
of Ghosh et al. [42]. Samples were prepared by spin-coating a droplet of an aqueous
solution of these particles on a glass coverslide. Thereafter, we scanned the sample
with a focused radially polarized laser beam with wavelength of 488 nm. Figure4.43
shows one such a scan performed with a 488 nm radially polarized laser. The image
clearly shows fixed single dipole pexc behavior. More than that, one sees that no
CND has more than one emission center. Of course, one can argue that there might
be multiple emitters oriented in same direction, for which one needs to perform care-
ful antibunching measurements or step-wise bleaching experiments. Some intensity
time traces are shown in the supplementary figure S5 in [42] which prove that the
CNDs have single emission centers. The presence of single dipole pexc indicates that
the PL originates from charge recombination of defect centers in the CND. Further,
we performed experiments to determine the pexc and pem simultaneously on indi-
vidual particles. Figure4.44 shows scans of 5 particles with radially polarized laser
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Fig. 4.43 The left image shows intensity patterns of CNDs scanned by a radially polarized laser.
The image size is 12.5 × 12.5μm2 with a pixel size of 50 nm and a pixel dwell time of 5ms. The
excitation was done using a 488 nm laser at a power of ∼5 kWcm2. The top right image shows the
lifetime image with the calculated lifetime values for each single emitter. The right bottom graph
shows the histogram of all the lifetimes of all the emitters identified. 62 intensity patterns were
identified using the pattern matching algorithm

Fig. 4.44 Top row shows scans of 5 carbon dot particles with radially polarized laser with a
wavelength of 488 nm. The orientations of the pexc for these patterns are shown with the double
arrows. The bottom row shows the defocused images of the corresponding molecules together with
the orientations of the pem shown by the double arrows. [This figure has been published in the
article [42]]

excitation and their corresponding defocused images which also show single dipole
behavior. The defocusing value was approximately 0.9μm above the focal plane.
The figure shows that the excitation and emission takes along a particular orientation
in each particle. The angle between these both TDMs does not exceed 5◦ for these
particles.
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Chapter 5
Discussion and Outlook

5.1 MIET on Metal Thin Films

The quenching of fluorescence and the modification of emission rates of a dye mole-
cule depend on several factors such as the refractive index and thickness of the metal
film, the layers and thicknesses of the media above and below, the emission wave-
length and quantum yield of the dye. Depending on the requirements of the experi-
ment (the axial resolution desired, the maximum height range, refractive index of the
medium) and dye characteristics one has to calculate the MIET calibration curves
in order to select a suitable metal film and its thickness. A few general trends of
the MIET curves can be speculated based on the properties of the metals that can
be useful for the selection. Let us fix the emission wavelength and thickness of the
metal film to 690 nm and 10 nm respectively. We assume that the thin metal film
is deposited on top of glass (n = 1.52) and the medium above is water (n = 1.33).
Further, let us fix the quantum yield of the emitter as unity. The refractive index of
these metals at this wavelength are listed in the form of a table below1,2

Metal Refractive index (690nm)
Aluminum 1.58 + 7.93i
Beryllium 3.43 + 3.24i
Chromium 3.63 + 4.26i
Copper 0.22 + 4.00i
Gold 0.17 + 3.79i
Nickel2 2.15 + 3.93i
Palladium 1.94 + 4.47i
Platinum 2.50 + 3.93i
Silver 0.17 + 4.22i
Titanium 2.18 + 3.27i
Tungsten 3.66 + 2.79i

1The refractive indices were calculated using the Brendel-Bormann model using the values given
in [1].
2We assume the relative magnetic permeability as unity for the case of Nickel.
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Fig. 5.1 Calculated relative
lifetime values as a function
of distance from the surface
of various metals

Figure5.1 shows the variation of lifetimes with distance from metal surfaces
considered here for an isotropic emitter or a dipole that is rotating faster than its
excited state lifetime so that it can be considered as an isotropic emitter. FromHagen-
Rubens relationship, the conductivity of a metal is related to the reflection coefficient
(at normal incidences).

|R| ≈ 1 − 2

√
ω

2πσ
(5.1)

where ω is the angular frequency of light. Therefore, at a particular wavelength,
the conductivity is roughly proportional to the inverse of the transparency of the
metal. Since, |T | ∝ 1 − |1 − |n|/1 + |n||2, it gives us that silver is the best conduc-
tor, closely followed by gold and then copper, at the chosen wavelength. Tungsten,
beryllium and chromium are the least conductive materials in the list. Observing
the curves shown in Fig. 5.1, one can vaguely state that the steepness of the lifetime
variation with distance is related to the conductivity of the metal. The distance range
where the fluorescence quenching is effective is roughly proportional to the conduc-
tivity of the metal. However, aluminum acts as an exception to this trend whichmight
be due to its exceptionally high imaginary part of refractive index.

Let us now comment on the localization accuracy of a single molecule on top of
the various metals considered above. Most of the fluorescent dyes exhibit an excited
state lifetime τ f in the range of 1–5 ns. The precision of estimating lifetime values
depends on the number of photons collected. Assuming pure Poisson statistics, the
error of lifetime determination is given by

�τ � τ f√
N

(5.2)
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Fig. 5.2 Left figure shows the plots of relative intensity of a single molecule that one observes
through a 10 nm of metal layer on top of glass with a 1.49 N.A. objective, as a function of distance.
The values are normalized to a dipole in water (n = 1.33) without any metal film. The right figure
shows the plot of axial localization errors as a function of distance above the metal films

where N is the total number of photons. The equality occurs only in ideal situations
with negligible background photons. This means that if one has approximately 1000
photons, the relative error within which the lifetime values can be estimated cannot
be less than 0.03. Using theMIET curves this error can be translated into axial errors.
For a single molecule, immobilized in a polymer over glass substrate, one collects
approximately 104 photons before it photobleaches. However, due to the quenching
of fluorescence in the presence of the metal film, one collects less photons from
the same single molecule. This means that the axial localization error of a molecule
close to the metal surface is higher. The axial error is also high if the derivative of
the lifetime curve versus the height is low. This is shown in Fig. 5.2. We calculated
the number of photons one collects from a single molecule before it bleaches based
on the relative intensity for a dipole above these metal layers, which gives us the
relative error of lifetime estimation at each height. Thereafter, this lifetime error was
converted into axial localization error by taking the derivative of the height with
respect to the lifetime. In this way, we get an estimate of axial localization error that
one would likely measure as a function of the molecule’s position on top of the metal
surface. We repeated the calculations for air as a medium on top of the metal films
shown in Fig. 5.3. Note that these calculations were performed assuming quantum
yield of the dye as unity and for a metal thickness of 10 nm. The lifetime curves
will show different behavior for a different quantum yield and film thickness, which
would result in a different axial error.

From these simple calculations, we observe that the error calculated is extremely
high below 5 nm for both, water and air environments. For this reason, while mea-
suring axial positions of dye molecules or labeled biological structures, one usually
evaporates a thin layer (at least 10 nm) of transparent SiO2 as a spacer on top of a
metal thin film. The curves for gold and copper show the highest axial error within
the range of 10 nm to 30 nm. However, the advantage of a gold/copper thin film in
a MIET experiment is that the lifetime values increase monotonically up to a height
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Fig. 5.3 Same as Fig. 5.2, but for air on top of the metal films

of 150 nm as in contrast to most other metals considered here. The variation of life-
times with height is high in the range between 40 and 70 nm which translates to an
axial localization precision of less than 5 nm in water and 2 nm in air (see figures
above). This makes them useful for live cell nanoscopy [2] where one would like to
investigate the structure of biological entities of a cell on top of a surface. For such
experiments, an error of 5 nm is tolerable. Aluminum, on the other hand, can be used
to measure smaller distances, upto 1 nm, between a range of 10 to 30 nm. As can
be seen in the figures, the relative intensity in water that one measures through this
metal is much higher in comparison to the case of a gold film. The steep variation of
the lifetime values with distance from aluminum surface can be useful for achieving
a higher resolution in height variation, making it a potential candidate for single-
molecule measurements in these conditions. A precaution that one must take while
working with silver thin films is that they easily form a thin layer of the silver oxide
while reacting with oxygen present in the ambient air or dissolved in water over time.
This affects the transparency and the overall fluorescence lifetime behavior over the
surface. Therefore, one usually evaporates a thin layer (10–20 nm) of transparent
SiO2 additionally on top of an evaporated silver thin film in order to prevent such
a layer. This oxidation process is not a problem in the case of aluminum since, in
this case the layer of alumina formed is transparent in the visible wavelengths. In
any case, the axial error as we calculated for the figures above can be used as a way
to characterize the performance of thin metal films for the experimental parameters.
The axial error of gold, for example, for a thickness of 20 nm is much lower as com-
pared to the curve shown in Fig. 5.2 for the same wavelength and quantum yield of
the dye.
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5.2 SmMIET for Structural Biology

With the help of simple experiments, we achieved a nanometer axial localization pre-
cision from a thin gold film at single molecule level. Therefore, if the dye molecules
are rotating freely in space and are separated spatially or show stochastic blinking,
similar to the requirements for a localization based super-resolution technique such as
STORM, PALM or PAINT, then by using the fluorescence lifetime information, one
can now localize each emitter with a nanometer axial precision, within the near-field
range from a thin metal film (∼100nm). This can allow one to study, for example, the
processes involved in a focal adhesions such as a cell’s adhesion to its extra cellular
matrix, force transmission, cytoskeletal regulation and signaling [3–5], close to a
surface, at single molecule level.

If, on the other hand, the molecules are restricted in their rotation and are some-
how fixed with a random orientation then, as we saw in Sect. 4.3.3, one introduces
significant lateral localization errors, as high as ∼15nm (see Fig. 4.33), even when
the molecules are present in the focal plane of a high N.A. objective. Although
one can achieve a nanometer precision in localization, the point localization based
super-resolution methods suffer from these huge inaccuracies which act as major
limitations [6, 7]. In such a case, it will be useful to utilize the method of defo-
cused imaging in combination with smMIET, where the advantage is two-fold. First,
it allows one to determine the orientation of the dye molecule with respect to the
metal surface, which is necessary for estimating its accurate height from the sur-
face (Sect. 2.4.3). Second, as was emphasized and shown in discussion of the same
chapter, fitting the defocused intensity patterns with a log-likelihood algorithm yields
a high lateral localization precision. Since one takes into account the asymmetry in
the angular distribution of radiation from an oriented dipole, the lateral position esti-
mated in such a way should be close to its true location, within the error limits. We
are currently exploring the applicability of defocused imaging in combination with
smMIET.

Even though the thin metal film absorbs and reflects a part of the emission from
a fluorophore, preliminary experiments show the possibility of acquiring defocused
patterns with such a metal thin film substrate. Figure5.4 shows a few captured defo-
cused patterns of Atto 655 molecules on top of an SiO2 spacer of 30 nm. Thus, all
that is required is to combine a FLIM microscope together with defocused imaging.

Extending a laser-scanning confocal FLIM system by adding a detection channel
with a defocused EMCCD camera is one of the many options. The idea is much simi-
lar to the experimental method shown in the work for the determination of excitation
and emission dipole orientations (Sect. 4.4), but using a linearly polarized laser for
scanning. A pre-scan is performed first to locate the position of the molecules on
top of the substrate using a custom written search-and-seek LabVIEW program, and
thereafter, a series of defocused images is acquired for each emitter by parking the
scanner at its position. Further, in order to obtain a reliable estimate of the fluores-
cence lifetimes, a part of the photons are focused onto a Single-Photon Avalanche
Diode (τ -SPAD, PicoQuant) during the point measurements. A good compromise
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Fig. 5.4 Defocused images of Atto 655 molecules, spin-coated on top of a 10 nm gold film with
a 30 nm SiO2 spacer in between, at various defocusing values. The left figure was taken with a
defocusing of 0.5μm whereas the two figures on the right were taken with a defocusing value of
1.2μm. The setup details can be found in Sect. 3.1.2

between the number of photons required for a good signal-to-noise ratio in the defo-
cused image for orientation and lateral position estimation, and the number of photons
for fluorescence lifetime estimation, can be obtained by dividing the total emission
in a ratio of 7:3 using a 70R : 30 T beamsplitter (Thorlabs). The complete setup
description above can be summarized into a figure, as shown in Fig. 5.5.

Now consider an experiment where one would like to determine the distance
between two labeled sites on a biomolecular complex or protein. This is a clas-
sical problem where one uses FRET to determine such intramolecular distances.
However, as pointed out in Chap. 3, one needs a priori information regarding the
mutual orientation of the acceptor and donor molecule with respect to each other
in order to quantify the distance between them, which acts as a major limitation of
the method. A possible solution to this problem using smMIET would be to deter-
mine the heights of the two probes in two separate wavelength channels, thereby
obtaining a distribution of height differences between both, allowing one to estimate
the exact distance between both the sites using rudimentary statistics. This approach
was already introduced in Fig. 3.10. Although this approach suits the nature of the
problem, the situation gets complicated if one has multiple labeled sites on a glob-
ular protein or biomolecular complex. Of course, one could proceed in a customary
way by labeling two sites at a time, resolving the distances between each pair, and
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Fig. 5.5 Optical setup design for performing smMIET measurements together with defocused
imaging. The collected photons are split into two pathways using a beamsplitter (BS). A part of the
fluorescence photons are led to a camera that is displaced from the focal plane in image space. The
remaining photons are focused onto a SPAD after having passed through a pinhole (PH)

subsequently obtaining all distances to determine the complete geometry. Here we
propose an alternative solution.

Let us consider a simpler situation where, again, we would like to determine the
distance between two labeled sites, as shown in Fig. 5.6. Further, instead of labeling
two chromatically separated dyes, let us assume that the two dyes are identical. This
reduces the required knowledge of precise free space parameters such as free space
lifetime τ0 and quantum yield � for the two dye species, which are vital for deter-
mining the axial distances. Several scenarios and possibilities now exist. If the dye
molecules are STORM-able (blinking stochastically) then one can acquire a video
of blinking defocused images, together with TTTR scheme based photon recording,
using the setup described above. This opens the possibility tomeasure average photon
arrival time together with capturing defocused images of each individual emitter dur-
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ing its on time. One can later sort the frames based on the average lifetime measured
and add them individually in order to separate the defocused intensity patterns, as
summarized in Fig. 5.6. Fitting the defocused images will yield the x, y-position and
orientation with respect to the vertical that is useful for determining the z-distance
together with fluorescence lifetimes. In this way, all three coordinates of the two dye
molecules can be determined. By repeating the measurements on a number of such
labeled biomolecules of complexes will yield statistics for determining the correct
distance between the two sites. It is worthy to note here that if the dye molecules are
fixed, one observes defocused intensity patterns, whereas if the molecules are free
to rotate around their positions with a negligible height fluctuation, we still obtain a
defocused image of an isotropic emitter that can be localized. The heights of such
freely rotating dyes can be directly calculated from their fluorescence lifetimes with
the MIET calibration curve for an isotropic emitter, as all orientations are averaged
out.

Since blinking plays an important role, one can easily combine this techniquewith
the recently developed DNA-PAINT (point accumulation for imaging in nanoscale
topography) technique used for super-resolution imaging [8]. In this method one
binds each target site of a biomolecule with a docking single strand DNA (docking
strand). Later, a solution containing its complementary strand together with a fluo-
rescent label (imaging strand) is added with a predetermined concentration, using the
binding and dissociation kinetics, in such a way that one observes stochastic bind-
ing events at each target site, separated in time. This induces blinking at the target
sites which is similar, yet more controlled, to the conventional STORM imaging.
The added advantage of such a method is that one can collect fluorescence from
each target site indefinitely and there is no limitation due to photobleaching. In this
way a sub-10-nm lateral resolution can be achieved. Together with the powerful
smMIET technique, one can achieve resolutions down to a few nanometers in all
three dimensions.

One last case may be considered in the experimental design proposed above. If
the dyes are not STORM-able, i.e. they do not blink, such as Atto 655 [9], then
due to the exponential photobleaching probability one of the two dye molecules is
likely to bleach before the other. One can use the time trace from the SPAD signal
to identify such a single step bleaching event which later can be used to calculate
the average photon arrival times of the two labels individually. Consequently, one
uses the defocused pattern of the last remaining dye molecule to identify its posi-
tion and later use the information to substract from the image containing the sum
of both molecules’ intensity patterns. Such subtractive techniques are commonly
used as single-molecule localization based super-resolution methods such as Single
molecule High-Resolution Imaging with Photobleaching (SHRImP) [10–12]. All
the discussion above can be extended beyond just two labeled sites as well, within,
however, the experimental limits.
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Fig. 5.6 The schematic on top shows the geometry of the experiment. The globular protein with
two labels is deposited on the spacer. If a buffer is required to stabilize the structure, then one binds
these proteins to the surface. The orientation of the structure can be random. A transparent SiO2
spacer is required to avoid total quenching of emission from the dye molecules. In the right bottom
the four subfigures are: Top left, Summation of all the simulated defocused intensity images; top
right, the summation of frames where at least one dye molecule is on; bottom two, summation of
frames that are sorted out based on the observed fluorescence lifetime for each dye molecule

5.3 Dynamics Using MIET—DynaMIET

So far we discussed the possibility and options to apply smMIET in combination
with a few existing imaging techniques for structural biology. Similar to FRET, one
can also apply smMIET for the study of dynamics. The distance dependent energy
transfer quenches the fluorescence of a molecule and therefore modifies the total
energy radiated much like FRET. Figure5.7 shows the variation of intensity as a
function of distance. The intensity is roughly proportional to the lifetime curve and
increases monotonically with the distance from the surface. Therefore, any variation
of the height of a fluorescent molecule reflects in its intensity time trace.
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Fig. 5.7 The variation of
fluorescence lifetime and
intensity of an isotropic
emitter with the distance
above a thin gold film for a
dye with unit quantum yield
emitting at wavelength
λem = 690 nm. The values
are normailzed to a free
dipole in water. The inset on
the top left shows a
schematic of an Intrinsically
Disordered Protein (IDP)
bound to surface on one end
and a dye molecule attached
to the lose end

Recently, there has been a dramatic interest in the study of the conformational
dynamics of Intrinsically Disordered Proteins (IDPs) such as the well-known FG
repeats which are found in the nuclear pore complex [13]. Various studies on con-
formational dynamics of large proteins have been performed using spFRET [14–17]
and Photo-induced Electron Transfer (PET) [18–20]. If one binds such an IDP on top
of passivated SiO2 spacer with a thin metal film beneath, with a dye attached to its
free end as shown in Fig. 5.7 then intensity fluctuations due to the movement of the
dye with respect to the surface in time, can be correlated to probe the conformational
dynamics of the protein. If G(z f , zi , t) is the Green’s function for the probability to
find the free end at a height z f at a time t if it was at a height zi at time t = 0, then
the correlation function for the intensity fluctuations can be written as

g(t) = g∞ +
∫

dzi

∫
dz f U (zi )G(z f , zi , t)U (z f ) (5.3)

where g∞ is the correlation at long lag times, which resembles the square of aver-
age intensity, U (zi ) and U (z f ) are the Molecular Detection Functions (MDF) at
the heights zi , z f , respectively, given that the focus position is centered at the metal
surface, which show the probability to detect a photon from the dye molecule. In
principle, the MDF is proportional to the product of the probability to excite a mole-
cule at a given position in the focus and the probability to collect the emitted photons
from the same position. If we assume that the conformational dynamics of a protein
is in the order of a few nanometers to tens of nanometers, then MDF is directly
proportional to the intensity at the respective heights, since the collection efficiency
remains a constant on these length scales. Therefore, one can probe and analyze the
parameters and properties of the protein chain based on amodel for the Green’s func-
tion. We call this approach for studying conformational dynamics using smMIET as
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Fig. 5.8 Left panel shows the calculated relative intensity values at various distances from a gold
thin film for three wavelengths as shown in the legend with water as a medium on top. The right
panel show the derivative of the intensity curves for a height variation of 10 nm

dynaMIET. This method can be extended for probing polymer chain dynamics under
various flow conditions, diffusion and convection in confined environments, etc.

The choice of metal and wavelength of the dye plays an important role while
performing such experiments. The quantum yield of a dye, refractive index of the
buffer, all play a role in determining the intensity and lifetime variation with the
distance from the metal surface as was described earlier in Sect. 5.1. In particular, the
influence of refractive index of a metal surface on the lifetime-distance dependence
across the entire visible range is not so pronounced, and this dependency is much
steeper for shorter wavelengths (since then, the amount of quenching is based on
the optical path length). This is shown in Fig. 5.8. The distance dependent intensity
curves are shown here for three different emissionwavelengths on top of a 10 nmgold
film. As one can see, the distance dependency of intensity at an emission wavelength
of 525 nm is much steeper than in red wavelengths. This directly translates to the
fact that the fluctuations of intensity that one would observe for a rapidly oscillating
dye molecule is high for blue wavelengths. The right graph in the figure above shows
the intensity variation δ I (z) for a height of 10 nm at various heights from the metal
surface at the three wavelengths. The correlation amplitude that one would observe
is directly proportional to (δ I (z))2, which means that for small height fluctuations
of the free end of a protein chain, on the order of few nanometers, it is desirable to
perform the experiments with a fluorophore emitting at ∼ λem = 525 nm in order to
observe higher correlation amplitudes for resolving its temporal dynamics. However,
gold is known to have a high photoluminescencewhen awavelength ofλ = 488 nm is
incident on it. Therefore, silver might act as a convenient choice in blue wavelengths,
which shows similar quenching effects.

Apart from all the above mentioned applications, one can combine the intensity
fluctuations due to diffusion or convection with fluorescence lifetime information
using advanced analysis methods such as Fluorescence Lifetime Correlation Spec-
troscopy (FLCS) [21, 22] or 2D-FLCS [23, 24]. This will allow one to resolve such
transport phenomena in a height dependent manner within the range of MIET that
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will have huge potential in problems such as flow profiling inmicro/nano-fluidics and
diffusion measurements in lipid bilayers in a leaflet-dependent manner. Such experi-
ments would involve the measurement of fluorescence lifetimes from the molecules
traveling through the excitation volume at different heights simultaneously. This
poses a requirement of a huge number of photons in order to be able to resolve
numerous exponential decays. The number of photons required to obtain the the
heights of two molecules emitting simultaneously will depend on the difference of
their excited state lifetimes. This is in contrast to the single-molecule Metal-Induced
Energy Transfer (smMIET) experiments where we achieved a localization accuracy
of around 2.5 nm for Atto 655 molecules at various heights with approximately
103 photons, that were recorded separately in different experiments (Chap. 3). This
means that in order to resolve distances in the order of about 5 nm on top of a thin
gold film using a standard fluorescent molecule that emits in the red wavelengths
(λem = 690 nm) and decays with a half-time of ∼3 ns in free space, one needs to
distinguish two lifetime values with a difference in the order of 0.2–0.3 ns, which is
experimentally challenging. The small differences between the two lifetimes is due
the gradual variation in the energy transfer rate over the first 150 nm from the metal
surface in the red emission wavelengths.

There are two possible ways to overcome such a limitation: 1) By using blue
wavelength emission fluorophores, 2) by selecting a different metal/metal-oxide thin
film that has a lower absorption coefficient in the emission wavelength. Both these
options can be explained by referring back to the MIET-theory Sect. 2.4.3, in partic-
ular, by looking at Eq.2.155. The choice of a shorter emission wavelength is based
on the fact that the exponential factor−2iw1|z0| decays faster (w1 ∝ 1/λ1), whereas
the refractive index plays a role in determining the dependence of the effective reflec-
tion coefficient Rp,s as a function of the angle of the emitted plane wave (taken into
account by the variable u = q/k1).

Recently, a group published the application of an Indium Tin Oxide (ITO) for
MIET applications [25] which allows for a steeper distance-fluorescence lifetime
variation than the metal films we considered in Sect. 5.1. Such a metal oxide film can
be used to distinguish the dyes labeling a the top and bottom leaflets of a lipid bilayer
which is approximately 4 nm to 5 nm in thickness. ITO has been applied before to
study the binding of small unilamellar vesicles (SUVs) to supported bilayers by using
MIET in combination with FLCS by Benda et al. [21]. However the main aim of
their work was to distinguish between the two-dimensional diffusion of bilayers on
the ITO support from the three dimensional vesicle diffusion in solution. Performing
long diffusion experiments with focused illumination on labeled lipid molecules
or proteins in supported lipid bilayers on ITO substrate would make it possible
to distinguish the diffusion in the top and bottom leaflets and resolve the flip-flop
dynamics of these molecules across both the leaflets [22] (see for example Fig. 5.9).
Such experiments will open new perspectives in supported lipid bilayer research,
especially in estimating the effect of substrate on the lipid diffusion and parameters
such as interleaflet coupling in asymmetric bilayers.
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Fig. 5.9 The MIET calibration curve for a dye with free space lifetime τ0 = 3.0 ns and quantum
yield � = 0.45 on top of ITO layer (thickness 300 nm) with a SiO2 spacer of 4 nm is shown here.
A randomly labeled supported lipid bilayer is shown on top of the spacer. The bilayer is 4–5 nm
thick, which corresponds to a difference of at least 1 ns between the lifetime values of the dye in
the top and the bottom leaflet

In short, there exist a multitude of exciting options and applications of smMIET
in future. One needs to explore further possibilities to combine this powerful method
with the existing techniques in order to fully utilize its potential.

5.4 Ongoing Experiments

Currently we are exploring the potential applications of smMIET in all the afore-
mentioned directions. For testing the three-dimensional localization experiments, we
have designed stable DNA origami structures in close collaboration with the Tin-
nefeld group (see for example [26, 27]), with two to three dye molecules separated in
height and lateral position. On the other hand we are also focusing on the dynamics
of a DNA hairpin and Holliday junction, on top of a DNA origami similar to the
experiments designed and performed by Tsukanov et al. [28, 29]. This will help us
explore the strengths and limitations of smMIET in more detail.
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Chapter 6
Conclusion

In this thesis, we introduced the concept of metal-induced energy transfer (MIET)
giving a complete overview of the theory behind starting from fundamentals. In
principle, the theory developed here is not just limited to electric dipole emitters and
can be extended to model the emission properties of other exotic emitters such as
magnetic dipoles, electric quadrapoles, and semiconductor nanocrystals (quantum
dots) which have two dimensional degenerate emission transition dipoles. Further,
the study of emission properties of these emitters in peculiar environments such
as nanocavities of various geometries can be modeled by extending this theory on
similar lines (see for example references [1–3]).

With the help of simple experiments, as presented in Chap.3, we demonstrated
the capability to determine the distances of dye molecules from a metal surface with
nanometer accuracy at single molecule level (smMIET). Combining this method
with localization based super-resolution techniques such as STORM, PALM or
PAINT might achieve an isotropic three-dimensional nanometer localization pre-
cision within the near-field range of around∼100nm. Further, using a suitable trans-
parent metal-oxide conductor thin film as a substrate, one can resolve intramolecular
distances in biomacromolecules, similar to the conventionally used FRET technique,
with Angstrom resolution. Unlike in a FRET measurement, where an a priori infor-
mation of the orientation of the acceptor and donor dye molecules with respect to
each other is necessary to quantify the exact distances, here one needs the orientations
of the dyes with respect to the metal surface only. This would allow measuring such
intramolecular distances reliably and conveniently. The methods discussed in this
thesis are a few examples to achieve the dipole orientations. In principle, the excited-
state lifetime of a fluorescent molecule close to a metallic surface is governed by the
orientation of its emission transition dipole moment. However, to a certain degree
of error, one can consider that this orientation is collinear to its excitation transition
dipole. Hence, one can apply techniques that can individually measure excitation
transition dipole orientations as well. An exciting future possibility is to explore the
combination of smMIET with the work of Hohlbein et al. [4] which allows rapid
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emission transition dipole imaging. With the advent of rapid galvoscanner modules
on confocal microscopes, one can acquire images with high frame rates. This will
allow such techniques to measure spatial and temporal information simultaneously.

We have also discussed the possibility to localize fixed single molecules with
the help of defocused imaging, free of any biases. Therefore, combining defocused
imaging with smMIET can allow us to localize emitters with a three-dimensional
nanometer resolution. Currently, we are exploring this possibility with the help of a
few well-designed experiments with samples where distance between two label sites
are known.

Towards the end of this thesis, we introduced a second method with which we
simultaneously determine the three-dimensional orientation and structure of excita-
tion and emission transition dipoles of single emitters. The presented measurements
with two commercial dye systems show that there is a significant re-organization of
molecular structure in their excited states due to which there exists a considerable
angle γ between their excitation and emission transition dipole moments. Using this
method, where one uses a radially polarized excitation laser for scanning and subse-
quently acquires defocused images for each individual emitter, the geometry of the
transition dipoles of exotic emitters as mentioned above can be studied as well. This
will be useful, in particular, for understanding the nature and geometry of excitation
and emission transitions of the emitter.
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Glossary

CCD Charge Coupled Device
STORM Stochastic Optical Reconstruction Microscopy
PALM Photoactivated Localization Microscopy
PAINT Points Accumulation for Imaging in Nanoscale Topography (microscopy)
FLIM Fluorescence Lifetime Imaging Microscopy
FCS Fluorescence Correlation Spectroscopy
FLCS Fluorescence Lifetime Correlation Spectroscopy
MIET Metal-Induced Energy Transfer
smMIET single-molecule Metal-Induced Energy Transfer
PSF Point Spread Function
TTTR Time-Tagged Time-Resolved
TCSPC Time-Correlated Single Photon Counting
FRET Förster Resonance Energy Transfer
spFRET single-pair Förster Resonance Energy Transfer
NSOM Near-field Scanning Optical Microscope
DNA Deoxyribonucleic Acid
PAID Photon-Arrival-Time Intensity Distribution
FILDA Fluorescence Intensity and Lifetime Distribution Analysis
CND Carbon Nanodot
N.A. Numerical Aperture
NV Nitrogen-Vacancy
HOMO Highest Occupied Molecular Orbital
LUMO Lowest Unoccupied Molecular Orbital
EM Electromagnetic
DOS Density of States
LDOS Local Density of States
TE Transversal Electric
TM Transversal Magnetic
TIR Total Internal Reflection
SPCM Single Photon Counting Module
TTL Transistor-Transistor Logic
TEM Transversal Electromagnetic
MPD Micro Photon Devices
SPAD Single-Photon Avalanche Diode
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162 Glossary

NIM Nuclear Instrumentation Module
SFLIM Spectrally-Resolved Fluorescence Lifetime Imaging Microscopy
PVA Poly(vinyl alcohol)
PMMA Poly(methyl methacrylate)
CPS Chance, Prock and Silbey (Theory)
EMCCD Electron Multiplying Charge Coupled Device
TDM Transition Dipole Moment
PL Photoluminescence
IDP Intrinsically Disordered Protein
PET Photoinduced Electron Transfer
MFD Molecular Detection Function
ITO Indium Tin Oxide
TDC Time-to-Digital Converter
IPTD Inter-Photon Time Distribution
SHRImP Single Molecule High-Resolution Imaging with Photobleaching
IRF Instrument Response Function
AOTF Acousto-optical Tunable Filter
MLE Maximum Likelihood Estimation
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